Content deleted Content added
Line 15:
* <math> \mathcal{K}_j(\mathcal{G}^{(i)}) </math> is the family of all <math> j </math>-element vertex sets that span the clique <math> K_j^{(i)} </math> in <math> \mathcal{G}^{(i)} </math>. In particular, <math> \mathcal{K}_j(\mathcal{G}^{(1)}) = K_l^{(j)}(V_1, \ldots, V_l) </math> is a complete <math> l </math>-partite <math> j </math>-graph.
<blockquote>'''Definition [Relative density].''' For <math> j \geq 3 </math>, fix some classes <math> V_{i_1}, \ldots, V_{i_j} </math> of <math> \mathcal{G}^{(1)} </math> with <math> 1 \leq i_1 < \ldots < i_j \leq l </math>. Suppose <math> r \geq 1 </math> is an integer. Let <math> \mathbf{Q}^{(j-1)} = \{ Q_1^{(j-1)}, \ldots, Q_r^{(j-1)} \} </math> be a subhypergraph of the induced <math> j </math>-partite graph <math> \mathcal{G}^{(j-1)}[V_{i_1}, \ldots, V_{i_j}] </math>. Define the relative density <math>d\left(\mathcal{G}^{(j)} \vert \mathbf{Q}^{(j-1)}\right) = \frac{\left|\mathcal{G}^{(j)} \cap \cup_{s \in [r]} \mathcal{K}_j(Q_s^{j-1})\right|}{\left|\cup_{s \in [r]} \mathcal{K}_j(Q_s^{j-1})\right|}</math>.</blockquote>In what follows is the appropriate notion of pseudorandomness that the regularity method will use. Informally, by this concept of regularity, <math> (j-1) </math>-edges (<math> \mathcal{G}^{(j-1)} </math>) have some control over <math> j </math>-edges (<math> \mathcal{G}^{(j)} </math>). Formally,<blockquote>'''Definition [(<math> \delta_j, d_j, r </math>)-regularity].''' Suppose <math> \delta_j, d_j </math> are positive real numbers and <math> r \geq 1 </math> is an integer. <math> \mathcal{G}^{(j)} </math> is (<math> \delta_j, d_j, r </math>)-regular with respect to <math> \mathcal{G}^{(j-1)} </math> if for any choice of classes <math> V_{i_1}, \ldots, V_{i_j} </math> and any collection of subhypergraphs <math> \mathbf{Q}^{(j-1)} = \{ Q_1^{(j-1)}, \ldots, Q_r^{(j-1)} \} </math> of <math> \mathcal{G}^{(j-1)}[V_{i_1}, \ldots, V_{i_j}] </math> satisfying <math>\left|\cup_{s \in [r]}\mathcal{K}_j(Q_s)^{(j-1)}\right| \geq \delta_j \left|\mathcal{K}_j(\mathcal{G}^{(j-1)}[V_{i_1}, \ldots, V_{i_j}])\right|</math> we have <math> d(\mathcal{G}^{(j)} \vert \mathbf{Q}^{(j-1)}) = d_j \pm \delta_j </math>.</blockquote>Roughly speaking, following describes the pseudorandom blocks into which the hypergraph regularity lemma decomposes any large enough hypergraph. In Szemerédi regularity, 2-edges are regularized versus 1-edges (vertices). In this generalized notion, <math> j </math>-edges are regularized versus <math> (j-1) </math>-edges for all <math> 2\leq j\leq h </math>.
* For each <math> 1 \leq i_1 < i_2 \leq l </math>, <math> \mathcal{G}^{(2)}[V_{i_1},V_{i_2}] </math> is <math> \delta_2 </math>-regular with density <math> d_2 \pm \delta_2 </math>.
|