Three utilities problem: Difference between revisions

Content deleted Content added
image of the problem in a plane. Per WP:DYKIMG, the image "must already be in the article". As discussed at the DYK, this image is more informative than the one without lines.
moved history section to the top
Line 13:
 
<math>K_{3,3}</math> is a graph with six vertices and nine edges, often referred to as the '''utility graph''' in reference to the problem.{{r|gs93}} It has also been called the '''Thomsen graph''' after 19th-century chemist [[Hans Peter Jørgen Julius Thomsen|Julius Thomsen]]. It is a [[well-covered graph]], the smallest [[triangle-free graph|triangle-free]] [[cubic graph]], and the smallest non-planar [[Laman graph|minimally rigid graph]].
==History==
A review of the history of the three utilities problem is given by {{harvtxt|Kullman|1979}}. He states that most published references to the problem characterize it as "very ancient".{{r|kullman1979}} In the earliest publication found by Kullman, {{harvs|first=Henry|last=Dudeney|authorlink=Henry Dudeney|year=1917|txt}} names it "water, gas, and electricity". However, Dudeney states that the problem is "as old as the hills...much older than [[electric lighting]], or even [[town gas|gas]]".{{r|dud17}} Dudeney also published the same puzzle previously, in ''[[The Strand Magazine]]'' in 1913.{{r|dud13}} A competing claim of priority goes to [[Sam Loyd]], who was quoted by his son in a posthumous biography as having published the problem in 1900.{{r|early}}
 
Another early version of the problem involves connecting three houses to three wells.{{r|3wells}} It is stated similarly to a different (and solvable) puzzle that also involves three houses and three fountains, with all three fountains and one house touching a rectangular wall; the puzzle again involves making non-crossing connections, but only between three designated pairs of houses and wells or fountains, as in modern [[numberlink]] puzzles.{{r|fountains}} Loyd's puzzle "The Quarrelsome Neighbors" similarly involves connecting three houses to three gates by three non-crossing paths (rather than nine as in the utilities problem); one house and the three gates are on the wall of a rectangular yard, which contains the other two houses within it.{{r|quarrelsome}}
 
As well as in the three utilities problem, the graph <math>K_{3,3}</math> appears in late 19th-century and early 20th-century publications both in early studies of [[structural rigidity]]{{r|dixon|henneberg}} and in [[chemical graph theory]], where [[Hans Peter Jørgen Julius Thomsen|Julius Thomsen]] proposed it in 1886 for the then-uncertain structure of [[benzene]].{{r|thomsen}} In honor of Thomsen's work, <math>K_{3,3}</math> is sometimes called the Thomsen graph.{{r|bollobas}}
 
==Statement==
Line 58 ⟶ 64:
[[Pál Turán]]'s "[[Turán's brick factory problem|brick factory problem]]" asks more generally for a formula for the [[crossing number (graph theory)|minimum number of crossings]] in a drawing of the [[complete bipartite graph]] <math>K_{a,b}</math> in terms of the numbers of vertices <math>a</math> and <math>b</math> on the two sides of the bipartition. The utility graph <math>K_{3,3}</math> may be drawn with only one crossing, but not with zero crossings, so its crossing number is one.{{r|early|ps09}}{{Clear|left}}
 
==History==
A review of the history of the three utilities problem is given by {{harvtxt|Kullman|1979}}. He states that most published references to the problem characterize it as "very ancient".{{r|kullman1979}} In the earliest publication found by Kullman, {{harvs|first=Henry|last=Dudeney|authorlink=Henry Dudeney|year=1917|txt}} names it "water, gas, and electricity". However, Dudeney states that the problem is "as old as the hills...much older than [[electric lighting]], or even [[town gas|gas]]".{{r|dud17}} Dudeney also published the same puzzle previously, in ''[[The Strand Magazine]]'' in 1913.{{r|dud13}} A competing claim of priority goes to [[Sam Loyd]], who was quoted by his son in a posthumous biography as having published the problem in 1900.{{r|early}}
 
Another early version of the problem involves connecting three houses to three wells.{{r|3wells}} It is stated similarly to a different (and solvable) puzzle that also involves three houses and three fountains, with all three fountains and one house touching a rectangular wall; the puzzle again involves making non-crossing connections, but only between three designated pairs of houses and wells or fountains, as in modern [[numberlink]] puzzles.{{r|fountains}} Loyd's puzzle "The Quarrelsome Neighbors" similarly involves connecting three houses to three gates by three non-crossing paths (rather than nine as in the utilities problem); one house and the three gates are on the wall of a rectangular yard, which contains the other two houses within it.{{r|quarrelsome}}
 
As well as in the three utilities problem, the graph <math>K_{3,3}</math> appears in late 19th-century and early 20th-century publications both in early studies of [[structural rigidity]]{{r|dixon|henneberg}} and in [[chemical graph theory]], where [[Hans Peter Jørgen Julius Thomsen|Julius Thomsen]] proposed it in 1886 for the then-uncertain structure of [[benzene]].{{r|thomsen}} In honor of Thomsen's work, <math>K_{3,3}</math> is sometimes called the Thomsen graph.{{r|bollobas}}
 
==References==