Content deleted Content added
→Straightforward perturbation-series solution: More detail on regular perturbation expansion |
|||
Line 18:
===Straightforward perturbation-series solution===
A regular [[perturbation theory|perturbation-series approach]] to the problem proceeds by writing <math display="inline">y(t) = y_0(t) + \varepsilon y_1(t) + \mathcal{O}(\varepsilon^2)</math> and substituting this into the undamped Duffing equation. Matching powers of <math display="inline">\varepsilon</math> gives the
<math>\frac{d^2 y_0}{dt^2} + y_0 = 0,</math>
<math>\frac{d^2 y_1}{dt^2} + y_1 = - y_0^3</math>.
Solving these subject to the initial conditions yields
:<math>
Line 26 ⟶ 32:
</math>
===Method of multiple scales===
|