Content deleted Content added
No edit summary |
m v2.04b - Bot T20 CW#61 - Fix errors for CW project (Reference before punctuation) |
||
Line 3:
Interval Predictor Models are sometimes referred to as a [[nonparametric regression]] technique, because a potentially infinite set of functions are contained by the IPM, and no specific distribution is implied for the regressed variables.
Multiple-input multiple-output IPMs for multi-point data commonly used to represent functions have been recently developed
As a consequence of the theory of [[scenario optimization]], in many cases rigorous predictions can be made regarding the performance of the model at test time.<ref name="CampiCalafiore2009">{{cite journal|last1=Campi|first1=M.C.|last2=Calafiore|first2=G.|last3=Garatti|first3=S.|title=Interval predictor models: Identification and reliability|journal=Automatica|volume=45|issue=2|year=2009|pages=382–392|issn=00051098|doi=10.1016/j.automatica.2008.09.004}}</ref>
Line 47:
Initially, [[scenario optimization]] was applied to robust control problems.<ref name="CampiGaratti2009">{{cite journal|last1=Campi|first1=Marco C.|last2=Garatti|first2=Simone|last3=Prandini|first3=Maria|author3-link= Maria Prandini |title=The scenario approach for systems and control design|journal=Annual Reviews in Control|volume=33|issue=2|year=2009|pages=149–157|issn=13675788|doi=10.1016/j.arcontrol.2009.07.001}}</ref>
Crespo (2015) and (2021) applied Interval Predictor Models to the design of space radiation shielding <ref name="CrespoKenny2016a">{{cite book|last1=Crespo|first1=Luis G.|title=18th AIAA Non-Deterministic Approaches Conference|last2=Kenny|first2=Sean P.|last3=Giesy|first3=Daniel P.|last4=Norman|first4=Ryan B.|last5=Blattnig|first5=Steve|chapter=Application of Interval Predictor Models to Space Radiation Shielding|year=2016|doi=10.2514/6.2016-0431|isbn=978-1-62410-397-1|hdl=2060/20160007750}}</ref> and to system identification
In Patelli (2017), Faes (2019), and Crespo (2018), Interval Predictor models were applied to the [[structural reliability]] analysis problem.<ref name="PatelliBroggi2017">{{cite book|last1=Patelli|first1=Edoardo|title=Proceedings of the 2nd International Conference on Uncertainty Quantification in Computational Sciences and Engineering (UNCECOMP 2017)|last2=Broggi|first2=Matteo|last3=Tolo|first3=Silvia|last4=Sadeghi|first4=Jonathan|year=2017|pages=212–224|doi=10.7712/120217.5364.16982|chapter=Cossan Software: A Multidisciplinary and Collaborative Software for Uncertainty Quantification|isbn=978-618-82844-4-9}}</ref>
|