Modular lambda function: Difference between revisions

Content deleted Content added
Correct reference
Elliptic modulus: Proper name of the section
Line 63:
:<math>(1-u^8)(1-v^8)-(1-uv)^8=0.</math>
 
==Lambda-star==
==Elliptic modulus==
[[File:Lambda star function in range -3 to 3.png|thumb|λ*(x) in the complex plane.]]
 
===Definition and computation of lambda-star===
 
The function λ*(x)<ref>{{Cite book |last1=Borwein |first1=Jonathan M. |last2=Borwein| first2=Peter B. |title=Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity |publisher=Wiley-Interscience |year=1987 |edition=First |isbn=0-471-83138-7}} p. 152</ref> gives the value of the elliptic modulus <math>k</math>, for which the complete [[elliptic integral]] of the first kind <math>K(k)</math> and its complementary counterpart <math>K\left(\sqrt{1-k^2}\right)</math> are related by following expression:
 
:<math>\frac{K\left[\sqrt{1-\lambda^*(x)^2}\right]}{K[\lambda^*(x)]} = \sqrt{x}</math>