Content deleted Content added
Note |
|||
Line 57:
==Modular equations==
The ''modular equation of degree'' <math>p</math> (where <math>p</math> is a prime number) is an algebraic equation in <math>\alpha = \lambda (p\tau)</math> and <math>\beta =\lambda (\tau)</math> (where <math>\tau\in\mathbb{C}</math> such that <math>\operatorname{Re}\tau=0</math> and <math>\operatorname{Im}\tau>0</math>). If <math>u=\sqrt[8]{\alpha}</math> and <math>v=\sqrt[8]{\beta}</math>, the modular equations of degrees <math>p=2,3,5,7</math> are, respectively,<ref>{{Cite book |last1=Borwein |first1=Jonathan M. |last2=Borwein| first2=Peter B. |title=Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity |publisher=Wiley-Interscience |year=1987 |edition=First |isbn=0-471-83138-7}} p. 103–109, 134</ref>
:<math>(1+u^4)^2v^8-4u^4=0,</math>
:<math>u^4-v^4+2uv(1-u^2v^2)=0,</math>
|