Content deleted Content added
→Divisibility: Simplified further |
→Properties of the Carmichael function: Reordered subsections |
||
Line 94:
:<math>a^r = 1^k \cdot a^r \equiv \left(a^{\lambda(n)}\right)^k\cdot a^r = a^{k\lambda(n)+r} = a^m \equiv 1\pmod{n}</math>
for all numbers {{mvar | a}} coprime with {{mvar | n}}. It follows {{math | 1=''r'' = 0}}, since {{math | ''r'' < ''λ''(''n'')}} and {{math | ''λ''(''n'')}} the minimal positive such number.
===Extension for powers of two===▼
For {{mvar | a}} coprime to (powers of) 2 we have {{math | ''a'' {{=}} 1 + 2''h''}} for some {{mvar | h}}. Then,▼
:<math>a^2 = 1+4h(h+1) = 1+8C</math>▼
where we take advantage of the fact that {{math | ''C'' :{{=}} {{sfrac|(''h'' + 1)''h''|2}}}} is an integer.▼
So, for {{math | 1=''k'' = 3}}, {{mvar | h}} an integer:▼
:<math>\begin{align}▼
a^{2^{k-2}}&=1+2^k h \\▼
a^{2^{k-1}}&=\left(1+2^k h\right)^2=1+2^{k+1}\left(h+2^{k-1}h^2\right)▼
\end{align}</math>▼
By induction, when {{math | ''k'' ≥ 3}}, we have▼
:<math>a^{2^{k-2}}\equiv 1\pmod{2^k}.</math>▼
It provides that {{math | ''λ''(2<sup>''k''</sup>)}} is at most {{math | 2<sup>''k'' − 2</sup>}}.<ref name="car">{{cite book|first=Robert Daniel|last=Carmichael|title=The Theory of Numbers|___location=Nabu Press|isbn=1144400341|url=http://www.gutenberg.org/ebooks/13693}}{{page needed|date=May 2020}}</ref>▼
=== {{math | ''λ''(''n'')}} divides {{math | ''φ''(''n'')}} ===
Line 155 ⟶ 136:
:<math>a \equiv a^{\lambda(n)+1} \pmod n.</math>
▲===Extension for powers of two===
▲For {{mvar | a}} coprime to (powers of) 2 we have {{math | ''a'' {{=}} 1 + 2''h''}} for some {{mvar | h}}. Then,
▲:<math>a^2 = 1+4h(h+1) = 1+8C</math>
▲where we take advantage of the fact that {{math | ''C'' :{{=}} {{sfrac|(''h'' + 1)''h''|2}}}} is an integer.
▲So, for {{math | 1=''k'' = 3}}, {{mvar | h}} an integer:
▲:<math>\begin{align}
▲a^{2^{k-2}}&=1+2^k h \\
▲a^{2^{k-1}}&=\left(1+2^k h\right)^2=1+2^{k+1}\left(h+2^{k-1}h^2\right)
▲\end{align}</math>
▲By induction, when {{math | ''k'' ≥ 3}}, we have
▲:<math>a^{2^{k-2}}\equiv 1\pmod{2^k}.</math>
▲It provides that {{math | ''λ''(2<sup>''k''</sup>)}} is at most {{math | 2<sup>''k'' − 2</sup>}}.<ref name="car">{{cite book|first=Robert Daniel|last=Carmichael|title=The Theory of Numbers|___location=Nabu Press|isbn=1144400341|url=http://www.gutenberg.org/ebooks/13693}}{{page needed|date=May 2020}}</ref>
===Average value===
|