Non-negative matrix factorization: Difference between revisions

Content deleted Content added
m Relation to other techniques: Edit author list.
Clustering property: Use cite journal template for webarchive ref.
Line 107:
When the orthogonality constraint <math> \mathbf{H}\mathbf{H}^T = I </math> is not explicitly imposed, the orthogonality holds to a large extent, and the clustering property holds too. Clustering is the main objective of most [[data mining]] applications of NMF.{{citation needed|date=April 2015}}
 
When the error function to be used is [[Kullback–Leibler divergence]], NMF is identical to the [[Probabilistic latent semantic analysis]], a popular document clustering method.<ref>C{{cite journal |vauthors=Ding C, T Li Y, W Peng, [W |url=http://users.cis.fiu.edu/~taoli/pub/NMFpLSIequiv.pdf " |title=On the equivalence between non-negative matrix factorization and probabilistic latent semantic indexing"] {{Webarchive|archive-url=https://web.archive.org/web/20160304070027/http://users.cis.fiu.edu/~taoli/pub/NMFpLSIequiv.pdf |archive-date=2016-03-04 }}|url-status=dead |journal=Computational Statistics & Data Analysis |volume=52, |pages=3913-3927}}</ref>
 
== Types ==