Error analysis for the Global Positioning System: Difference between revisions

Content deleted Content added
Cewbot (talk | contribs)
Rescuing 1 sources and tagging 0 as dead.) #IABot (v2.0.8.6
Line 282:
When combining the time dilation and gravitational frequency shift, the discrepancy is about 38 microseconds per day, a difference of 4.465 parts in 10<sup>10</sup>.<ref>Rizos, Chris. [[University of New South Wales]]. [http://www.gmat.unsw.edu.au/snap/gps/gps_survey/chap3/312.htm GPS Satellite Signals] {{Webarchive|url=https://web.archive.org/web/20100612004027/http://www.gmat.unsw.edu.au/snap/gps/gps_survey/chap3/312.htm |date=2010-06-12}}. 1999.</ref> Without correction, errors of roughly 11.4&nbsp;km/day would accumulate in the position.<ref>{{Cite book |last=Faraoni |first=Valerio |url=https://books.google.com/books?id=NuS9BAAAQBAJ |title=Special Relativity |publisher=Springer Science & Business Media |year=2013 |isbn=978-3-319-01107-3 |edition=illustrated |page=54}} [https://books.google.com/books?id=NuS9BAAAQBAJ&pg=PA54 Extract of page 54]</ref> This initial pseudorange error is corrected in the process of solving the [[GPS#Navigation equations|navigation equations]]. In addition, the elliptical, rather than perfectly circular, satellite orbits cause the time dilation and gravitational frequency shift effects to vary with time. This eccentricity effect causes the clock rate difference between a GPS satellite and a receiver to increase or decrease depending on the altitude of the satellite.
 
To compensate for the discrepancy, the frequency standard on board each satellite is given a rate offset prior to launch, making it run slightly slower than the desired frequency on Earth; specifically, at 10.22999999543&nbsp;MHz instead of 10.23&nbsp;MHz.<ref name="Nelson">[http://www.aticourses.com/global_positioning_system.htm The Global Positioning System by Robert A. Nelson Via Satellite] {{Webarchive|url=https://web.archive.org/web/20100718150217/http://www.aticourses.com/global_positioning_system.htm |date=2010-07-18 }}, November 1999</ref> Since the atomic clocks on board the GPS satellites are precisely tuned, it makes the system a practical engineering application of the scientific theory of relativity in a real-world environment.<ref>Pogge, Richard W.; [http://www.astronomy.ohio-state.edu/~pogge/Ast162/Unit5/gps.html "Real-World Relativity: The GPS Navigation System"]. Retrieved 25 January 2008.</ref> Placing atomic clocks on artificial satellites to test Einstein's general theory was proposed by [[Friedwardt Winterberg]] in 1955.<ref>{{Cite web |date=1956-08-10 |title=Astronautica Acta II, 25 (1956). |url=http://bourabai.kz/winter/satelliten.htm |access-date=2009-10-23}}</ref>
 
=== Calculation of time dilation ===