Content deleted Content added
Revert old vandalism |
proper short description this time |
||
Line 1:
{{Short description|Stack-based method for clustering}}
{{good article}}
In the theory of [[cluster analysis]], the '''nearest-neighbor chain algorithm''' is an [[algorithm]] that can speed up several methods for [[agglomerative hierarchical clustering]]. These are methods that take a collection of points as input, and create a hierarchy of clusters of points by repeatedly merging pairs of smaller clusters to form larger clusters. The clustering methods that the nearest-neighbor chain algorithm can be used for include [[Ward's method]], [[complete-linkage clustering]], and [[single-linkage clustering]]; these all work by repeatedly merging the closest two clusters but use different definitions of the distance between clusters. The cluster distances for which the nearest-neighbor chain algorithm works are called ''reducible'' and are characterized by a simple inequality among certain cluster distances.
|