Faddeev–LeVerrier algorithm: Difference between revisions

Content deleted Content added
BattyBot (talk | contribs)
Line 75:
and, in comportance with the [[Cayley–Hamilton theorem]],
:<math> \operatorname{adj}(A) =(-1)^{n-1} M_{n}=(-1)^{n-1} (A^{n-1}+c_{n-1}A^{n-2}+ ...+c_2 A+ c_1 I)=(-1)^{n-1} \sum_{k=1}^n c_k A^{k-1}~.</math>
 
 
The final solution might be more conveniently expressed in terms of complete exponential [[Bell polynomials]] as
Line 90 ⟶ 89:
 
==An equivalent but distinct expression==
A compact determinant of an {{mvar|m}}×{{mvar|m}}-matrix solution for the above Jacobi's formula may alternatively determine the coefficients {{mvar|c}},<ref>Brown, Lowell S. (1994). ''Quantum Field Theory'', Cambridge University Press. {{ISBN|978-0-521-46946-3}}, p. 54; Also see, Curtright, T. L., Fairlie, D. B. and Alshal, H. (2012). "A Galileon Primer", arXiv:1212.6972 , section 3.</ref><ref>{{Cite book|title=Methods of Modern Mathematical Physics|last1=Reed|first1=M.|last2=Simon|first2=B.|publisher=ACADEMIC PRESS, INC.|year=1978|isbn=0-12-585004-2|volume=Vol. 4 Analysis of Operators|___location=USA|pages=323-333323–333, 340, 343}}</ref>
 
:<math>c_{n-m} = \frac{(-1)^m}{m!}
Line 101 ⟶ 100:
== See also ==
 
* [[Exterior algebra#Leverrier's%20algorithm algorithm|Exterior algebra § Leverrier's algorithm]]
* [[Jacobi's formula]]
* [[Fredholm determinant]]