Content deleted Content added
removing merge template, content from 28 June–2 July 2021 has been history-merged |
Citation bot (talk | contribs) Alter: template type. Add: authors 1-1. Removed parameters. Some additions/deletions were parameter name changes. | Use this bot. Report bugs. | Suggested by AManWithNoPlan | #UCB_webform 1188/1776 |
||
Line 1:
A '''graph neural network (GNN)''' is a class of [[neural network]]s for processing data represented by [[Graph (abstract data type)|graph data structures]].<ref>{{Cite journal|last1=Scarselli|first1=Franco|last2=Gori|first2=Marco|last3=Tsoi|first3=Ah Chung|last4=Hagenbuchner|first4=Markus|last5=Monfardini|first5=Gabriele|date=2009|title=The Graph Neural Network Model|url=https://ieeexplore.ieee.org/document/4700287|journal=IEEE Transactions on Neural Networks|volume=20|issue=1|pages=61–80|doi=10.1109/TNN.2008.2005605|pmid=19068426|s2cid=206756462|issn=1941-0093}}</ref><ref>{{Cite journal|
Since their inception, several variants of the simple message passing neural network (MPNN) framework have been proposed.<ref>{{Cite journal|last1=Kipf|first1=Thomas N|last2=Welling|first2=Max|date=2016|title=Semi-supervised classification with graph convolutional networks|url=https://ieeexplore.ieee.org/document/4700287|journal=International Conference on Learning Representations|volume=5|issue=1|pages=61–80|doi=10.1109/TNN.2008.2005605|pmid=19068426|arxiv=1609.02907|s2cid=206756462}}</ref><ref>{{Cite journal|last1=Defferrard|first1=Michaël|last2=Bresson|first2=Xavier|last3=Vandergheynst|first3=Pierre|date=2017-02-05|title=Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering|arxiv=1606.09375|journal=Neural Information Processing Systems|volume=30}}</ref><ref>{{Cite journal|last1=Hamilton|first1=William|last2=Ying|first2=Rex|last3=Leskovec|first3=Jure|date=2017|title=Inductive Representation Learning on Large Graphs|url=https://cs.stanford.edu/people/jure/pubs/graphsage-nips17.pdf|journal=Neural Information Processing Systems|volume=31|arxiv=1706.02216|via=Stanford}}</ref><ref>{{Cite journal|last1=Veličković|first1=Petar|last2=Cucurull|first2=Guillem|last3=Casanova|first3=Arantxa|last4=Romero|first4=Adriana|last5=Liò|first5=Pietro|last6=Bengio|first6=Yoshua|date=2018-02-04|title=Graph Attention Networks|arxiv=1710.10903|journal=International Conference on Learning Representations|volume=6}}</ref> These models optimize GNNs for use on larger graphs and apply them to domains such as [[social network]]s, [[Citation graph|citation networks]], and online communities.<ref>{{Cite web|title=Stanford Large Network Dataset Collection|url=https://snap.stanford.edu/data/|access-date=2021-07-05|website=snap.stanford.edu}}</ref>
It has been mathematically proven that GNNs are a weak form of the Weisfeiler–Lehman graph isomorphism test,<ref>{{cite
==References==
|