Content deleted Content added
Citation bot (talk | contribs) Alter: template type. Add: s2cid. | Use this bot. Report bugs. | Suggested by AManWithNoPlan | #UCB_webform 628/1682 |
|||
Line 68:
\end{cases}</math>
which is known as the [[Thresholding (image processing)|soft thresholding]] operator <math>S_{\gamma}(x)=\operatorname{prox}_{\gamma \|\cdot\|_1}(x)</math>.<ref name=combettes /><ref name=daubechies>{{cite journal|last=Daubechies|first=I. |author2=Defrise, M. |author3=De Mol, C.|author3-link= Christine De Mol |title=An iterative thresholding algorithm for linear inverse problem with a sparsity constraint|journal=Comm. Pure Appl. Math.|year=2004|volume=57|issue=11|pages=1413–1457|doi=10.1002/cpa.20042|arxiv=math/0307152|s2cid=1438417 }}</ref>
=== Fixed point iterative schemes ===
Line 84:
== Practical considerations ==
There have been numerous developments within the past decade in [[convex optimization]] techniques which have influenced the application of proximal gradient methods in statistical learning theory. Here we survey a few important topics which can greatly improve practical algorithmic performance of these methods.<ref name=structSparse /><ref name=bach>{{cite journal|last=Bach|first=F.|author2=Jenatton, R. |author3=Mairal, J. |author4=Obozinski, Gl. |title=Optimization with sparsity-inducing penalties|journal= Foundations and Trends in Machine Learning|year=2011|volume=4|issue=1|pages=1–106|doi=10.1561/2200000015|arxiv=1108.0775|bibcode=2011arXiv1108.0775B|s2cid=56356708}}</ref>
=== Adaptive step size ===
Line 90:
In the fixed point iteration scheme
:<math>w^{k+1} = \operatorname{prox}_{\gamma R}\left(w^k-\gamma \nabla F\left(w^k\right)\right),</math>
one can allow variable step size <math>\gamma_k</math> instead of a constant <math>\gamma</math>. Numerous adaptive step size schemes have been proposed throughout the literature.<ref name=combettes /><ref name=bauschke /><ref>{{cite journal|last=Loris|first=I. |author2=Bertero, M. |author3=De Mol, C. |author4=Zanella, R. |author5=Zanni, L. |title=Accelerating gradient projection methods for <math>\ell_1</math>-constrained signal recovery by steplength selection rules|journal=Applied & Comp. Harmonic Analysis|volume=27|issue=2|pages=247–254|year=2009|doi=10.1016/j.acha.2009.02.003|arxiv=0902.4424 |s2cid=18093882 }}</ref><ref>{{cite journal|last=Wright|first=S.J.|author2=Nowak, R.D. |author3=Figueiredo, M.A.T. |title=Sparse reconstruction by separable approximation|journal=IEEE Trans. Image Process.|year=2009|volume=57|issue=7|pages=2479–2493|doi=10.1109/TSP.2009.2016892|bibcode=2009ITSP...57.2479W|citeseerx=10.1.1.115.9334}}</ref> Applications of these schemes<ref name=structSparse /><ref>{{cite journal|last=Loris|first=Ignace|title=On the performance of algorithms for the minimization of <math>\ell_1</math>-penalized functionals|journal=Inverse Problems|year=2009|volume=25|issue=3|doi=10.1088/0266-5611/25/3/035008|page=035008|arxiv=0710.4082|bibcode=2009InvPr..25c5008L|s2cid=14213443}}</ref> suggest that these can offer substantial improvement in number of iterations required for fixed point convergence.
=== Elastic net (mixed norm regularization) ===
Line 97:
:<math>\min_{w\in\mathbb{R}^d} \frac{1}{n}\sum_{i=1}^n (y_i- \langle w,x_i\rangle)^2+ \lambda \left((1-\mu)\|w\|_1+\mu \|w\|_2^2\right), </math>
where <math>x_i\in \mathbb{R}^d\text{ and } y_i\in\mathbb{R}.</math>
For <math>0<\mu\leq 1</math> the penalty term <math>\lambda \left((1-\mu)\|w\|_1+\mu \|w\|_2^2\right)</math> is now strictly convex, and hence the minimization problem now admits a unique solution. It has been observed that for sufficiently small <math>\mu > 0</math>, the additional penalty term <math>\mu \|w\|_2^2</math> acts as a preconditioner and can substantially improve convergence while not adversely affecting the sparsity of solutions.<ref name=structSparse /><ref name=deMolElasticNet>{{cite journal|last=De Mol|first=C. |author2=De Vito, E. |author3=Rosasco, L.|title=Elastic-net regularization in learning theory|journal=J. Complexity|year=2009|volume=25|issue=2|pages=201–230|doi=10.1016/j.jco.2009.01.002|arxiv=0807.3423|s2cid=7167292 }}</ref>
== Exploiting group structure ==
Line 122:
=== Other group structures ===
In contrast to the group lasso problem, where features are grouped into disjoint blocks, it may be the case that grouped features are overlapping or have a nested structure. Such generalizations of group lasso have been considered in a variety of contexts.<ref>{{cite journal|last=Chen|first=X.|author2=Lin, Q. |author3=Kim, S. |author4=Carbonell, J.G. |author5=Xing, E.P. |title=Smoothing proximal gradient method for general structured sparse regression|journal=Ann. Appl. Stat.|year=2012|volume=6|issue=2|pages=719–752|doi=10.1214/11-AOAS514|arxiv=1005.4717|s2cid=870800}}</ref><ref>{{cite journal|last=Mosci|first=S.|author2=Villa, S. |author3=Verri, A. |author4=Rosasco, L. |title=A primal-dual algorithm for group sparse regularization with overlapping groups|journal=NIPS|year=2010|volume=23|pages=2604–2612}}</ref><ref name=nest>{{cite journal|last=Jenatton|first=R. |author2=Audibert, J.-Y. |author3=Bach, F. |title=Structured variable selection with sparsity-inducing norms|journal=J. Mach. Learn. Res.|year=2011|volume=12|pages=2777–2824|bibcode=2009arXiv0904.3523J |arxiv=0904.3523 }}</ref><ref>{{cite journal|last=Zhao|first=P.|author2=Rocha, G. |author3=Yu, B. |title=The composite absolute penalties family for grouped and hierarchical variable selection|journal=Ann. Stat.|year=2009|volume=37|issue=6A|pages=3468–3497|doi=10.1214/07-AOS584|arxiv=0909.0411|bibcode=2009arXiv0909.0411Z|s2cid=9319285}}</ref> For overlapping groups one common approach is known as ''latent group lasso'' which introduces latent variables to account for overlap.<ref>{{cite
== See also ==
|