Content deleted Content added
Citation bot (talk | contribs) Alter: template type. Add: bibcode, issue, s2cid. Removed proxy/dead URL that duplicated identifier. | Use this bot. Report bugs. | Suggested by AManWithNoPlan | #UCB_webform 681/1682 |
|||
Line 59:
The algorithm inputs are <math> A_1 ... A_m, C , b_1 ... b_m</math> and parameters regarding the solution's [[Trace class|trace]], precision and optimal value (the objective function's value at the optimal point).
The quantum algorithm<ref>{{cite
:<math>
Line 82:
===Quantum approximate optimization algorithm===
For combinatorial optimization, the '''quantum approximate optimization algorithm''' (QAOA)<ref>{{cite
The heart of QAOA relies on the use of [[unitary operators]] dependent on <math> 2p </math> [[angle]]s, where <math> p>1 </math> is an input integer. These operators are iteratively applied on a state that is an equal-weighted [[quantum superposition]] of all the possible states in the computational basis. In each iteration, the state is measured in the computational basis and <math> C(z) </math> is calculated. After a sufficient number of repetitions, the value of <math> C(z) </math> is almost optimal, and the state being measured is close to being optimal as well.
In 2020, it was shown that QAOA exhibits a strong dependence on the ratio of a problem's [[Constraint (mathematics)|constraint]] to [[Variable (mathematics)|variables]] (problem density) placing a limiting restriction on the algorithm's capacity to minimize a corresponding [[Loss function|objective function]].<ref name=":0">{{Cite journal|last1=Akshay|first1=V.|last2=Philathong|first2=H.|last3=Morales|first3=M. E. S.|last4=Biamonte|first4=J. D.|date=2020-03-05|title=Reachability Deficits in Quantum Approximate Optimization|journal=Physical Review Letters|volume=124|issue=9|pages=090504|doi=10.1103/PhysRevLett.124.090504|pmid=32202873|arxiv=1906.11259|bibcode=2020PhRvL.124i0504A|s2cid=195699685}}</ref>
It was soon recognized that a generalization of the QAOA process is essentially an alternating application of a continuous-time quantum walk on an underlying graph followed by a quality-dependent phase shift applied to each solution state. This generalized QAOA was termed as QWOA (Quantum Walk-based Optimisation Algorithm).<ref>{{Cite journal|last1=Marsh|first1=S.|last2=Wang|first2=J. B.|date=2020-06-08|title=Combinatorial optimization via highly efficient quantum walks|journal=Physical Review Research|volume=2|issue=2|pages=023302|doi=10.1103/PhysRevResearch.2.023302|arxiv=1912.07353 |bibcode=2020PhRvR...2b3302M|s2cid=216080740}}</ref>
In the paper ''How many qubits are needed for quantum computational supremacy'' submitted to arXiv,<ref>{{Cite journal|last1=Dalzell|first1=Alexander M.|last2=Harrow|first2=Aram W.|last3=Koh|first3=Dax Enshan|last4=La Placa|first4=Rolando L.|date=2020-05-11|title=How many qubits are needed for quantum computational supremacy?
== See also ==
|