Content deleted Content added
m improve link: Physicist, etc. (via WP:JWB) |
Matthiaspaul (talk | contribs) +link |
||
Line 77:
where Γ is the [[gamma function]]. For exponential decay, 〈''τ''〉 = ''τ''<sub>''K''</sub> is recovered.
The higher [[moment (mathematics)|moments]] of the stretched exponential function are<ref name="Zwillinger_2014">{{cite book |author-first1=Izrail Solomonovich |author-last1=Gradshteyn |author-link1=Izrail Solomonovich Gradshteyn |author-first2=Iosif Moiseevich |author-last2=Ryzhik |author-link2=Iosif Moiseevich Ryzhik |author-first3=Yuri Veniaminovich |author-last3=Geronimus |author-link3=Yuri Veniaminovich Geronimus |author-first4=Michail Yulyevich |author-last4=Tseytlin |author-link4=Michail Yulyevich Tseytlin |author-first5=Alan |author-last5=Jeffrey |editor-first1=Daniel |editor-last1=Zwillinger |editor-first2=Victor Hugo |editor-last2=Moll |editor-link2=Victor Hugo Moll |translator=Scripta Technica, Inc. |title=Table of Integrals, Series, and Products |publisher=[[Academic Press, Inc.]] |date=2015 |orig-year=October 2014 |edition=8 |language=English |isbn=978-0-12-384933-5 |lccn=2014010276 <!-- |url=https://books.google.com/books?id=NjnLAwAAQBAJ |access-date=2016-02-21-->|title-link=Gradshteyn and Ryzhik |chapter=3.478. |page=372}}</ref>
: <math>\langle\tau^n\rangle \equiv \int_0^\infty dt\, t^{n-1}\, e^{-(t/\tau_K)^\beta} = {{\tau_K}^n \over \beta }\Gamma \left({n \over \beta }\right).</math>
|