Content deleted Content added
Undid revision 1063475434 by 115.242.226.18 (talk) |
Tags: Mobile edit Mobile web edit Advanced mobile edit |
||
Line 15:
\int_{t_o}^{t_o+T} h_{_T}(\tau)\cdot x_{_T}(t - \tau)\,d\tau = \int_{-\infty}^\infty h(\tau)\cdot x_{_T}(t - \tau)\,d\tau\ \triangleq\ (h *x_{_T})(t) = (x * h_{_T})(t).</math>|{{EquationRef|Eq.1}}}}
{{
<math display="block">\begin{align}
\int_{-\infty}^\infty h(\tau)\cdot x_{_T}(t - \tau)\,d\tau
&=\sum_{k=-\infty}^\infty \left[\int_{t_o+kT}^{t_o+(k+1)T} h(\tau)\cdot x_{_T}(t - \tau)\ d\tau\right] \quad t_0 \text{ is an arbitrary parameter}\\
Line 23:
&=\int_{t_o}^{t_o+T} \underbrace{\left[\sum_{k=-\infty}^\infty h(u + kT)\right]}_{\triangleq \ h_{_T}(u)}\cdot x_{_T}(t - u)\ du\\
&=\int_{t_o}^{t_o+T} h_{_T}(\tau)\cdot x_{_T}(t - \tau)\ d\tau \quad \text{substituting } \tau \triangleq u
\end{align}</math>}}
Both forms can be called ''periodic convolution''.{{efn-la
|