Test functions for optimization: Difference between revisions

Content deleted Content added
m Capitalising short description "functions used to evaluate optimization algorithms" per WP:SDFORMAT (via Bandersnatch)
Link to Pareto fronts
Line 7:
* General performance.
 
Here some test functions are presented with the aim of giving an idea about the different situations that optimization algorithms have to face when coping with these kinds of problems. In the first part, some objective functions for single-objective optimization cases are presented. In the second part, test functions with their respective [[Pareto front|Pareto fronts]] for [[multi-objective optimization]] problems (MOP) are given.
 
The artificial landscapes presented herein for single-objective optimization problems are taken from Bäck,<ref>{{cite book|last=Bäck|first=Thomas|title=Evolutionary algorithms in theory and practice : evolution strategies, evolutionary programming, genetic algorithms|year=1995|publisher=Oxford University Press|___location=Oxford|isbn=978-0-19-509971-3|page=328}}</ref> Haupt et al.<ref>{{cite book|last=Haupt|first=Randy L. Haupt, Sue Ellen|title=Practical genetic algorithms with CD-Rom|year=2004|publisher=J. Wiley|___location=New York|isbn=978-0-471-45565-3|edition=2nd}}</ref> and from Rody Oldenhuis software.<ref>{{cite web|last=Oldenhuis|first=Rody|title=Many test functions for global optimizers|url=http://www.mathworks.com/matlabcentral/fileexchange/23147-many-testfunctions-for-global-optimizers|publisher=Mathworks|access-date=1 November 2012}}</ref> Given the number of problems (55 in total), just a few are presented here.