Content deleted Content added
Clarification |
|||
Line 72:
'''"Continuous" and "bounded" but not "bounded on a neighborhood"'''
A linear map is "[[#bounded on a neighborhood|bounded on a neighborhood]]" (of some point) if and only if it is locally bounded at every point of its ___domain, in which case it is necessarily continuous{{sfn|Narici|Beckenstein|2011|pp=156-175}} (even if its ___domain is not a [[normed space]]) and thus also
The next example shows that a continuous linear map need not be bounded on a neighborhood and so also demonstrates that being "bounded on a neighborhood" is {{em|not}} always synonymous with being "[[Bounded linear operator|bounded]]".
|