Content deleted Content added
supply requested citation |
→Other properties and identities: p < q ⇒ p ≠ q, verbal clarification is superfluous; 2^k is not an "example" but a defining predicate with a free variable {{mvar|k}}; clarify the pairwise use of *generalized* pentagonal numbers in Euler's recurrence; fix a dead URL to Euler archive; minor copy-ed; canonicalize mark up only unmarked math in text only, the minimum for immediate readability, per WP:MATH. |
||
Line 205:
===Other properties and identities===
[[Euler]] proved the remarkable recurrence:<ref>{{Cite arXiv |eprint = math/0411587|last1 = Euler|first1 = Leonhard|title = An observation on the sums of divisors|last2 = Bell|first2 = Jordan|year = 2004}}</ref><ref>
:<math>\begin{align}
\sigma(n) &= \sigma(n-1)+\sigma(n-2)-\sigma(n-5)-\sigma(n-7)+\sigma(n-12)+\sigma(n-15)+ \cdots \\[12mu]
&= \sum_{i\in\Z} (-1)^{i+1}\left( \sigma \left
\end{align}</math>
where <math>\sigma(0)=n</math> if it occurs and <math>\sigma(i)=0</math> for <math>i \leq 0
For a non-square integer, ''n'', every divisor, ''d'', of ''n'' is paired with divisor ''n''/''d'' of ''n'' and <math>\sigma_{0}(n)</math> is even; for a square integer, one divisor (namely <math>\sqrt n</math>) is not paired with a distinct divisor and <math>\sigma_{0}(n)</math> is odd. Similarly, the number <math>\sigma_{1}(n)</math> is odd if and only if ''n'' is a square or twice a square.{{sfnp|Gioia|Vaidya|1967}}
We also note ''s''(''n'') = ''σ''(''n'') − ''n''. Here ''s''(''n'') denotes the sum of the ''proper'' divisors of ''n'', that is, the divisors of ''n'' excluding ''n'' itself. This function is
If {{mvar|n}} is a power of 2
As an example, for two
:<math>n =
Then
:<math>\sigma(n) = (p+1)(q+1) = n + 1 + (p+q), </math>
:<math>\varphi(n) = (p-1)(q-1) = n + 1 - (p+q), </math>
Line 236:
where <math>\varphi(n)</math> is [[Euler phi|Euler's totient function]].
Then, the roots of
:<math>(x-p)(x-q) = x^2 - (p+q)x + n = x^2 - [(\sigma(n) - \varphi(n))/2]x + [(\sigma(n) + \varphi(n))/2 - 1] = 0 </math>
:<math>p = (\sigma(n) - \varphi(n))/4 - \sqrt{[(\sigma(n) - \varphi(n))/4]^2 - [(\sigma(n) + \varphi(n))/2 - 1]}, </math>
:<math>q = (\sigma(n) - \varphi(n))/4 + \sqrt{[(\sigma(n) - \varphi(n))/4]^2 - [(\sigma(n) + \varphi(n))/2 - 1]}. </math>
Also, knowing {{mvar|n}} and either <math>\sigma(n)</math> or <math>\varphi(n)</math>,
In 1984, [[Roger Heath-Brown]] proved that the equality
Line 251:
:<math>\sigma_0(n) = \sigma_0(n + 1)</math>
is true for
==Series relations==
|