Content deleted Content added
m Duplicate word removed |
Erel Segal (talk | contribs) |
||
Line 136:
* If the approximate oracle returns a solution with value larger than 1, then <math>\mathbf{y}_t</math> is definitely infeasible, and the solution correspond to a configuration that violates a constraint '''a'''. We do a "feasibility cut" in '''<math>\mathbf{y}_t</math>''', cutting the ellipsoid all points '''y''' for which <math>\mathbf{a}\cdot \mathbf{y} > 1</math>.
* If the approximate oracle returns a solution with value at most 1, then '''<math>\mathbf{y}_t</math>''' may or may not be feasible, but '''<math>\mathbf{y}_t</math>''' rounded down (denote it by '''<math>\mathbf{z}_t</math>''') is feasible. By definition of the rounding, we know that <math>\mathbf{n}\cdot \mathbf{z}_t \geq \mathbf{n}\cdot \mathbf{y}_t - \mathbf{n}\cdot \mathbf{1}\cdot (\delta/n) = \mathbf{n}\cdot \mathbf{y}_t - \delta</math>. We still do an "optimality cut" in '''<math>\mathbf{y}_t</math>''': we cut from the ellipsoid all points '''y''' for which <math>\mathbf{n}\cdot \mathbf{y} < \mathbf{n}\cdot \mathbf{y}_t</math>. Note
Using the approximate separation oracle gives a feasible solution '''y*''' to the dual LP, with <math>\mathbf{n}\cdot \mathbf{y^*} \geq LOPT-\delta</math>, after at most ''<math>Q</math>'' iterations, where <math>Q = 4m^2 \ln(mn/g\delta)</math>. The total run-time of the ellipsoid method with the approximate separation oracle is <math>O(Q m n /\delta)</math>.
|