Random phase approximation: Difference between revisions

Content deleted Content added
The figure and the caption have been removed because they are wrong: The RPA series of bubbles does NOT give the uncorrelated product (bubble) of renormalized electron and hole Green functions.
Line 1:
[[File:Random phase approximation ring diagrams.png|thumb|400px|Ring diagrams that are summed up in order to obtain the RPA approximation. Above bold lines stand for interacting Green functions, non-bold lines stand for non-interaction Green function, and dashed lines stand for two-body interactions.]]
 
The '''random phase approximation''' ('''RPA''') is an approximation method in [[condensed matter physics]] and in [[nuclear physics]]. It was first introduced by [[David Bohm]] and [[David Pines]] as an important result in a series of seminal papers of 1952 and 1953.<ref name="Bohm Pines pp. 625–634">{{cite journal | last=Bohm | first=David |author-link= David Bohm| last2=Pines | first2=David |author-link2=David Pines| title=A Collective Description of Electron Interactions. I. Magnetic Interactions | journal=Physical Review | publisher=American Physical Society (APS) | volume=82 | issue=5 | date=1 May 1951 | issn=0031-899X | doi=10.1103/physrev.82.625 | pages=625–634}}</ref><ref name="Pines Bohm pp. 338–353">{{cite journal | last=Pines | first=David |author-link=David Pines| last2=Bohm | first2=David |author-link2=David Bohm| title=A Collective Description of Electron Interactions: II. CollectivevsIndividual Particle Aspects of the Interactions | journal=Physical Review | publisher=American Physical Society (APS) | volume=85 | issue=2 | date=15 January 1952 | issn=0031-899X | doi=10.1103/physrev.85.338 | pages=338–353}}</ref><ref name="Bohm Pines pp. 609–625">{{cite journal | last=Bohm | first=David |author-link=David Bohm| last2=Pines | first2=David |author-link2=David Pines| title=A Collective Description of Electron Interactions: III. Coulomb Interactions in a Degenerate Electron Gas | journal=Physical Review | publisher=American Physical Society (APS) | volume=92 | issue=3 | date=1 October 1953 | issn=0031-899X | doi=10.1103/physrev.92.609 | pages=609–625}}</ref> For decades physicists had been trying to incorporate the effect of microscopic [[Quantum mechanics|quantum mechanical]] interactions between [[Electron|electrons]] in the theory of matter. Bohm and Pines' RPA accounts for the weak screened Coulomb interaction and is commonly used for describing the dynamic linear electronic response of electron systems.