Modularity theorem: Difference between revisions

Content deleted Content added
Munin (talk | contribs)
History: added years
Line 49:
Even after gaining serious attention, the Taniyama–Shimura–Weil conjecture was seen by contemporary mathematicians as extraordinarily difficult to prove or perhaps even inaccessible to proof<!--{{harv|Singh|1997|pp=203–205, 223, 226}}-->.{{sfn|Singh|1997|pp=203–205, 223, 226}} For example, Wiles's Ph.D. supervisor [[John H. Coates|John Coates]] states that it seemed "impossible to actually prove", and Ken Ribet considered himself "one of the vast majority of people who believed [it] was completely inaccessible".
 
In 1995 Andrew Wiles, with some help from [[Richard Taylor (mathematician)|Richard Taylor]], proved the Taniyama–Shimura–Weil conjecture for all [[semistable elliptic curve]]s, which he used to prove Fermat's Last Theorem,{{sfnm|Wiles|1995a|Wiles|1995b}}<!--{{harvs|txt|authorlink=Andrew Wiles|last=Wiles|year=1995}}--> and the full Taniyama–Shimura–Weil conjecture was finally proved by Diamond,{{sfn|Diamond|1996}}<!--{{harvtxt|Diamond|1996}}--> Conrad, Diamond & Taylor; and Breuil, Conrad, Diamond & Taylor; building on Wiles's work, they incrementally chipped away at the remaining cases until the full result was proved in 1999.{{sfn|Conrad|Diamond|Taylor|1999}}<!--{{harvtxt|Conrad|Diamond|Taylor|1999}}-->{{sfn|Breuil|Conrad|Diamond|Taylor|2001}}<!--{{harvtxt|Breuil|Conrad|Diamond|Taylor|2001}}-->
{{further|Fermat's Last Theorem|Wiles's proof of Fermat's Last Theorem}}