Functional integration: Difference between revisions

Content deleted Content added
Line 41:
 
:<math>
\frac{\int e^{i \int -\frac{1i}{2} \int f(x) \cdot K(x,y) \cdot f(y) \,dx\,dy + \int J(x) \cdot f(x) \,dx} [Df]}
{\int e^{i \int -\frac{1i}{2} \int f(x) \cdot K(x,y) \cdot f(y) \,dx\,dy} [Df]} =
e^{-i \frac{1i}{2}\int J(x) \cdot K^{-1}(x,y) \cdot J(y) \,dx\,dy}.
</math>