Content deleted Content added
m sp |
→Glossary of name variants: Unstyled non-math English text and punctuation. Tags: Mobile edit Mobile web edit |
||
Line 161:
==Glossary of name variants==
{{or section|date=December 2021}}
Let <math>f : X \to Y</math> be a map between two [[vector space]]s over a field <math>\mathbb{F}</math> (usually the [[real number]]s <math>\R</math> or [[complex number]]s <math>\Complex
<math display=inline>f(s x) = s f(x)</math> for every <math>x \in X</math> and scalar <math>s \in S
For instance, every [[additive map]] between vector spaces is {{em|{{visible anchor|homogeneous over the rational numbers}}}} <math>S := \Q</math> although it [[Cauchy's functional equation|might not be {{em|{{visible anchor|homogeneous over the real numbers}}}}]] <math>S := \R
The following commonly encountered special cases and variations of this definition have their own terminology:
#({{em|{{visible anchor|Strict positive homogeneity|Strictly positive homogeneous|text=Strict}}}}) {{em|{{visible anchor|Positive homogeneity|Positive homogeneous|Positively homogeneous}}}}: <math>f(rx) = r f(x)</math> for all <math>x \in X</math> and all {{em|positive}} real <math>r > 0
#* This property is often also called {{em|{{visible anchor|Nonnegative homogeneity|Nonnegative homogeneous|Nonnegatively homogeneous|text=nonnegative homogeneity}}}} because for a function valued in a vector space or field, it is [[Logical equivalence|logically equivalent]] to: <math>f(rx) = r f(x)</math> for all <math>x \in X</math> and all {{em|non-negative}} real <math>r \geq 0
#* This property is used in the definition of a [[sublinear function]].
#* [[Minkowski functional]]s are exactly those non-negative extended real-valued functions with this property.
#{{em|{{visible anchor|Real homogeneity|Real homogeneous}}}}: <math>f(rx) = r f(x)</math> for all <math>x \in X</math> and all real <math>r
#* This property is used in the definition of a {{em|real}} [[linear functional]].
#{{em|{{visible anchor|Homogeneity|Homogeneous}}}}: <math>f(sx) = s f(x)</math> for all <math>x \in X</math> and all scalars <math>s \in \mathbb{F}
#* It is emphasized that this definition depends on the scalar field <math>\mathbb{F}</math> underlying the ___domain <math>X</math>.
#* This property is used in the definition of [[linear functional]]s and [[linear map]]s.
#{{em|[[Semilinear map|{{visible anchor|Conjugate homogeneity|Conjugate homogeneous}}]]}}: <math>f(sx) = \overline{s} f(x)</math> for all <math>x \in X</math> and all scalars <math>s \in \mathbb{F}
#* If <math>\mathbb{F} = \Complex</math> then <math>\overline{s}</math> typically denotes the [[complex conjugate]] of <math>s
#* Along with [[Additive map|additivity]], this property is assumed in the definition of an [[antilinear map]]. It is also assumed that one of the two coordinates of a [[sesquilinear form]] has this property (such as the [[inner product]] of a [[Hilbert space]]).
All of the above definitions can be generalized by replacing the condition <math>f(rx) = r f(x)</math> with <math>f(rx) = |r| f(x)
For example,
<ol start=5>
<li>{{em|{{visible anchor|Absolute homogeneity|Absolute homogeneous|Absolutely homogeneous}}}}: <math>f(sx) = |s| f(x)</math> for all <math>x \in X</math> and all scalars <math>s \in \mathbb{F}
* This property is used in the definition of a [[seminorm]] and a [[Norm (mathematics)|norm]].
</li>
Line 190:
For instance,
<ol start=6>
<li>{{em|{{visible anchor|Real homogeneity of degree}} <math>k</math>}}: <math>f(rx) = r^k f(x)</math> for all <math>x \in X</math> and all real <math>r
</li>
<li>{{em|{{visible anchor|Homogeneity of degree}} <math>k</math>}}: <math>f(sx) = s^k f(x)</math> for all <math>x \in X</math> and all scalars <math>s \in \mathbb{F}
</li>
<li>{{em|{{visible anchor|Absolute real homogeneity of degree}} <math>k</math>}}: <math>f(rx) = |r|^k f(x)</math> for all <math>x \in X</math> and all real <math>r
</li>
<li>{{em|{{visible anchor|Absolute homogeneity of degree}} <math>k</math>}}: <math>f(sx) = |s|^k f(x)</math> for all <math>x \in X</math> and all scalars <math>s \in \mathbb{F}
</li>
</ol>
A nonzero [[continuous function]] that is homogeneous of degree <math>k</math> on <math>\R^n \backslash \lbrace 0 \rbrace</math> extends continuously to <math>\R^n</math> if and only if <math>k > 0
== See also ==
|