Variational autoencoder: Difference between revisions

Content deleted Content added
m The use of VAE mentioned was only partially correct - it can be used for compressing information from input space to latent space but its main goal is to map the input space to a latent distribution. This property of VAE differentiates it from autoencoders which performs only compression.
WikiCleanerBot (talk | contribs)
m v2.04b - Bot T20 CW#61 - Fix errors for CW project (Reference before punctuation)
Line 5:
In [[machine learning]], a '''variational autoencoder''',<ref name=":0">{{cite arXiv |last1=Kingma |first1=Diederik P. |last2=Welling |first2=Max |title=Auto-Encoding Variational Bayes |date=2014-05-01 |class=stat.ML |eprint=1312.6114}}</ref> also known as a '''VAE''', is the [[artificial neural network]] architecture introduced by [[Diederik P. Kingma]] and [[Max Welling]], belonging to the families of [[graphical model|probabilistic graphical models]] and [[variational Bayesian methods]].
 
It is often associated with the [[autoencoder]]<ref>{{cite journal |last1=Kramer |first1=Mark A. |title=Nonlinear principal component analysis using autoassociative neural networks |journal=AIChE Journal |date=1991 |volume=37 |issue=2 |pages=233–243 |doi=10.1002/aic.690370209 |url=https://aiche.onlinelibrary.wiley.com/doi/abs/10.1002/aic.690370209 |language=en}}</ref><ref>{{cite journal |last1=Hinton |first1=G. E. |last2=Salakhutdinov |first2=R. R. |title=Reducing the Dimensionality of Data with Neural Networks |journal=Science |date=2006-07-28 |volume=313 |issue=5786 |pages=504–507 |doi=10.1126/science.1127647 |pmid=16873662 |bibcode=2006Sci...313..504H |s2cid=1658773 |url=https://science.sciencemag.org/content/313/5786/504.abstract?casa_token=ZLsQ9vPfFA4AAAAA:3iBJRtRFr9RzkbbGpAJQtghIAndmRGEPVxW-yixDgfiXqWuuaQs8WjDMf-fkzTIe8RKn_J9o1aFozD4 |language=en}}</ref> model because of its architectural affinity, but there are significant differences both in the goal and in the mathematical formulation. Variational autoencoders allows us to re-write statistical inference problems (i.e infer the value of one random variable from another random variable) as statistical optimization problems (i.e find the parameter values that minimize some objective function).<ref>{{cite web |title=A Beginner's Guide to Variational Methods: Mean-Field Approximation |url=https://blog.evjang.com/2016/08/variational-bayes.html |website=Eric Jang |language=en |date=2016-07-08}}</ref>. They are meant to map the input variable to a multivariate latent distribution. Although this type of model was initially designed for [[unsupervised learning]],<ref>{{cite arXiv |last1=Dilokthanakul |first1=Nat |last2=Mediano |first2=Pedro A. M. |last3=Garnelo |first3=Marta |last4=Lee |first4=Matthew C. H. |last5=Salimbeni |first5=Hugh |last6=Arulkumaran |first6=Kai |last7=Shanahan |first7=Murray |title=Deep Unsupervised Clustering with Gaussian Mixture Variational Autoencoders |date=2017-01-13 |class=cs.LG |eprint=1611.02648}}</ref><ref>{{cite book |last1=Hsu |first1=Wei-Ning |last2=Zhang |first2=Yu |last3=Glass |first3=James |title=2017 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU) |chapter=Unsupervised ___domain adaptation for robust speech recognition via variational autoencoder-based data augmentation |date=December 2017 |pages=16–23 |doi=10.1109/ASRU.2017.8268911 |arxiv=1707.06265 |isbn=978-1-5090-4788-8 |s2cid=22681625 |chapter-url=https://ieeexplore.ieee.org/abstract/document/8268911?casa_token=i8S9DzueB5gAAAAA:SnZUh5mfUYtRpusQLMJxN7eC_-6-qOQs9vpkEcA0Ai_ju-nJH7o1H1DN6nDFdeCY-LgGg3OVKQ}}</ref> its effectiveness has been proven in other domains of machine learning such as [[semi-supervised learning]]<ref>{{cite book |last1=Ehsan Abbasnejad |first1=M. |last2=Dick |first2=Anthony |last3=van den Hengel |first3=Anton |title=Infinite Variational Autoencoder for Semi-Supervised Learning |date=2017 |pages=5888–5897 |url=https://openaccess.thecvf.com/content_cvpr_2017/html/Abbasnejad_Infinite_Variational_Autoencoder_CVPR_2017_paper.html}}</ref><ref>{{cite journal |last1=Xu |first1=Weidi |last2=Sun |first2=Haoze |last3=Deng |first3=Chao |last4=Tan |first4=Ying |title=Variational Autoencoder for Semi-Supervised Text Classification |journal=Proceedings of the AAAI Conference on Artificial Intelligence |date=2017-02-12 |volume=31 |issue=1 |url=https://ojs.aaai.org/index.php/AAAI/article/view/10966 |language=en}}</ref> or [[supervised learning]].<ref>{{cite journal |last1=Kameoka |first1=Hirokazu |last2=Li |first2=Li |last3=Inoue |first3=Shota |last4=Makino |first4=Shoji |title=Supervised Determined Source Separation with Multichannel Variational Autoencoder |journal=Neural Computation |date=2019-09-01 |volume=31 |issue=9 |pages=1891–1914 |doi=10.1162/neco_a_01217 |pmid=31335290 |s2cid=198168155 |url=https://direct.mit.edu/neco/article/31/9/1891/8494/Supervised-Determined-Source-Separation-with}}</ref>
 
== Architecture ==