Content deleted Content added
Rhubarbeer (talk | contribs) m →The Monti consensus clustering algorithm: Small math typo |
m link categorical data using Find link, wikified |
||
Line 1:
'''Consensus clustering''' is a method of aggregating (potentially conflicting) results from multiple [[clustering algorithm]]s. Also called '''cluster ensembles'''<ref name=StrehlEnsembles>{{cite journal|
==Issues with existing clustering techniques==
* Current clustering techniques do not address all the requirements adequately.
* Dealing with large number of dimensions and large number of data items can be problematic because of time complexity;
* Effectiveness of the method depends on the definition of "[[distance]]" (for distance-based clustering)
* If an obvious distance measure doesn't exist, we must "define" it, which is not always easy, especially in multidimensional spaces.
* The result of the clustering algorithm (that, in many cases, can be arbitrary itself) can be interpreted in different ways.
Line 32:
==Related work==
#'''Clustering aggregation (Fern and Brodley)''': They applied the clustering aggregation idea to a collection of [[soft clustering]]s they obtained by random projections. They used an agglomerative algorithm and did not penalize for merging dissimilar nodes.{{citation needed|date=July 2020}}
▲4. '''Dana Cristofor and Dan Simovici''': They observed the connection between clustering aggregation and clustering of categorical data. They proposed information theoretic distance measures, and they propose [[genetic algorithm]]s for finding the best aggregation solution.{{citation needed|date=July 2020}}
== Hard ensemble clustering ==
Line 48 ⟶ 44:
=== Efficient consensus functions ===
#'''Cluster-based similarity partitioning algorithm (CSPA)''':In CSPA the similarity between two data-points is defined to be directly proportional to number of constituent clusterings of the ensemble in which they are clustered together. The intuition is that the more similar two data-points are the higher is the chance that constituent clusterings will place them in the same cluster. CSPA is the simplest heuristic, but its computational and storage complexity are both quadratic in ''n''. [http://bioconductor.org/packages/release/bioc/html/SC3.html SC3] is an example of a CSPA type algorithm.<ref>{{Cite journal|last1=Kiselev|first1=Vladimir Yu|last2=Kirschner|first2=Kristina|last3=Schaub|first3=Michael T|last4=Andrews|first4=Tallulah|last5=Yiu|first5=Andrew|last6=Chandra|first6=Tamir|last7=Natarajan|first7=Kedar N|last8=Reik|first8=Wolf|last9=Barahona|first9=Mauricio|last10=Green|first10=Anthony R|last11=Hemberg|first11=Martin|date=May 2017|title=SC3: consensus clustering of single-cell RNA-seq data|journal=Nature Methods|language=en|volume=14|issue=5|pages=483–486|doi=10.1038/nmeth.4236|issn=1548-7091|pmc=5410170|pmid=28346451}}</ref> The following two methods are computationally less expensive:▼
#'''Hyper-graph partitioning algorithm (HGPA)''': The HGPA algorithm takes a very different approach to finding the consensus clustering than the previous method. The cluster ensemble problem is formulated as partitioning the hypergraph by cutting a minimal number of hyperedges. They make use of [http://glaros.dtc.umn.edu/gkhome/metis/hmetis/overview hMETIS] which is a hypergraph partitioning package system.▼
#'''Meta-clustering algorithm (MCLA)''':The meta-cLustering algorithm (MCLA) is based on clustering clusters. First, it tries to solve the cluster correspondence problem and then uses voting to place data-points into the final consensus clusters. The cluster correspondence problem is solved by grouping the clusters identified in the individual clusterings of the ensemble. The clustering is performed using [http://glaros.dtc.umn.edu/gkhome/views/metis METIS] and Spectral clustering.▼
▲In CSPA the similarity between two data-points is defined to be directly proportional to number of constituent clusterings of the ensemble in which they are clustered together. The intuition is that the more similar two data-points are the higher is the chance that constituent clusterings will place them in the same cluster. CSPA is the simplest heuristic, but its computational and storage complexity are both quadratic in ''n''. [http://bioconductor.org/packages/release/bioc/html/SC3.html SC3] is an example of a CSPA type algorithm.<ref>{{Cite journal|last1=Kiselev|first1=Vladimir Yu|last2=Kirschner|first2=Kristina|last3=Schaub|first3=Michael T|last4=Andrews|first4=Tallulah|last5=Yiu|first5=Andrew|last6=Chandra|first6=Tamir|last7=Natarajan|first7=Kedar N|last8=Reik|first8=Wolf|last9=Barahona|first9=Mauricio|last10=Green|first10=Anthony R|last11=Hemberg|first11=Martin|date=May 2017|title=SC3: consensus clustering of single-cell RNA-seq data|journal=Nature Methods|language=en|volume=14|issue=5|pages=483–486|doi=10.1038/nmeth.4236|issn=1548-7091|pmc=5410170|pmid=28346451}}</ref> The following two methods are computationally less expensive:
▲The cluster ensemble problem is formulated as partitioning the hypergraph by cutting a minimal number of hyperedges. They make use of [http://glaros.dtc.umn.edu/gkhome/metis/hmetis/overview hMETIS] which is a hypergraph partitioning package system.
▲First, it tries to solve the cluster correspondence problem and then uses voting to place data-points into the final consensus clusters. The cluster correspondence problem is solved by grouping the clusters identified in the individual clusterings of the ensemble.
== Soft clustering ensembles ==
''Punera'' and ''Ghosh'' extended the idea of hard clustering ensembles to the soft clustering scenario. Each instance in a soft ensemble is represented by a concatenation of ''r'' posterior membership probability distributions obtained from the constituent clustering algorithms. We can define a distance measure between two instances using the [[Kullback–Leibler divergence|Kullback–Leibler (KL) divergence]], which calculates the "distance" between two probability distributions.<ref>Kunal Punera, Joydeep Ghosh. [https://web.archive.org/web/20081201150950/http://www.ideal.ece.utexas.edu/papers/2007/punera07softconsensus.pdf Consensus Based Ensembles of Soft Clusterings]</ref>
#'''sCSPA''': extends CSPA by calculating a similarity matrix. Each object is visualized as a point in dimensional space, with each dimension corresponding to probability of its belonging to a cluster. This technique first transforms the objects into a label-space and then interprets the dot product between the vectors representing the objects as their similarity.▼
#'''sMCLA
#* Construct Soft Meta-Graph of Clusters▼
#* Group the Clusters into Meta-Clusters▼
#* Collapse Meta-Clusters using Weighting▼
#* Compete for Objects▼
#'''Bayesian consensus clustering (BCC)''': defines a fully [[Bayesian probability|Bayesian]] model for soft consensus clustering in which multiple source clusterings, defined by different input data or different probability models, are assumed to adhere loosely to a consensus clustering.<ref name=LockBCC>{{cite journal|last=Lock|first=E.F.|author2=Dunson, D.B. |title=Bayesian consensus clustering|journal=Bioinformatics|date=2013|doi=10.1093/bioinformatics/btt425|pmid=23990412|pmc=3789539|volume=29|number=20|pages=2610–2616|arxiv=1302.7280|bibcode=2013arXiv1302.7280L}}</ref> The full posterior for the separate clusterings, and the consensus clustering, are inferred simultaneously via Gibbs sampling.▼
== References ==▼
▲sCSPA extends CSPA by calculating a similarity matrix. Each object is visualized as a point in dimensional space, with each dimension corresponding to probability of its belonging to a cluster. This technique first transforms the objects into a label-space and then interprets the dot product between the vectors representing the objects as their similarity.
▲sMCLA extends MCLA by accepting soft clusterings as input. sMCLA's working can be divided into the following steps:
▲* Construct Soft Meta-Graph of Clusters
▲* Group the Clusters into Meta-Clusters
▲* Collapse Meta-Clusters using Weighting
▲* Compete for Objects
▲HBGF represents the ensemble as a bipartite graph with clusters and instances as nodes, and edges between the instances and the clusters they belong to.<ref>Solving cluster ensemble problems by bipartite graph partitioning, Xiaoli Zhang Fern and [[Carla Brodley]], Proceedings of the twenty-first international conference on Machine learning</ref> This approach can be trivially adapted to consider soft ensembles since the graph partitioning algorithm METIS accepts weights on the edges of the graph to be partitioned. In sHBGF, the graph has ''n'' + ''t'' vertices, where t is the total number of underlying clusters.
▲BCC defines a fully [[Bayesian probability|Bayesian]] model for soft consensus clustering in which multiple source clusterings, defined by different input data or different probability models, are assumed to adhere loosely to a consensus clustering.<ref name=LockBCC>{{cite journal|last=Lock|first=E.F.|author2=Dunson, D.B. |title=Bayesian consensus clustering|journal=Bioinformatics|date=2013|doi=10.1093/bioinformatics/btt425|pmid=23990412|pmc=3789539|volume=29|number=20|pages=2610–2616|arxiv=1302.7280|bibcode=2013arXiv1302.7280L}}</ref> The full posterior for the separate clusterings, and the consensus clustering, are inferred simultaneously via Gibbs sampling.
<references />
▲== References ==
* Aristides Gionis, [[Heikki Mannila]], Panayiotis Tsaparas. [https://web.archive.org/web/20060828084525/http://www.cs.helsinki.fi/u/tsaparas/publications/aggregated-journal.pdf Clustering Aggregation]. 21st International Conference on Data Engineering (ICDE 2005)
* Hongjun Wang, Hanhuai Shan, Arindam Banerjee. [http://www.siam.org/proceedings/datamining/2009/SDM09_022_wangh.pdf Bayesian Cluster Ensembles]{{Dead link|date=November 2019 |bot=InternetArchiveBot |fix-attempted=yes }}, SIAM International Conference on Data Mining, SDM 09
* Nam Nguyen, Rich Caruana. Consensus Clusterings. Seventh IEEE International Conference on Data Mining.
▲* Alexander Topchy, Anil K. Jain, William Punch. [http://dataclustering.cse.msu.edu/papers/TPAMI-ClusteringEnsembles.pdf Clustering Ensembles: Models of Consensus and Weak Partitions]. IEEE International Conference on Data Mining, ICDM 03 & SIAM International Conference on Data Mining, SDM 04
[[Category:Cluster analysis]]
|