Content deleted Content added
m names of newspapers; mos:quote chars, replaced: =Wall Street Journal → =The Wall Street Journal, “ → " (3), ” → " (3), ’ → ' (2) |
→Design specifications: I'm pretty sure that's what's used here Tags: Mobile edit Mobile web edit |
||
Line 3:
==Design specifications==
EM2 is an advanced modular reactor expected to produce 265 MW<sub>e</sub> (500 MW<sub>th</sub>) of power with evaporative cooling (240 MW<sub>e</sub> with dry cooling) at a core outlet temperature of {{convert|850|°C|-2}}. The reactor will be fully enclosed in an underground containment structure for 30 years without requiring refueling.<ref>{{cite web|url=http://www.ga.com/advanced-reactors |title=Advanced Reactors |publisher=General Atomics |access-date = Feb 19, 2018}}</ref> EM2 differs from current reactors in that it does not use water coolant but is instead a [[gas-cooled fast reactor]], which uses [[helium]] as a coolant for an additional level of safety. The reactor uses a composite of [[silicon carbide]] as a fuel cladding material, and [[zirconium]] silicide as [[neutron reflector]] material. The reactor unit is coupled to a direct-drive helium [[closed-cycle gas turbine]] which in turn drives a generator for the production of electricity.
The nuclear core design is based upon a new conversion technique in which an initial "starter" section of the core provides the [[neutrons]] to convert fertile material (used nuclear fuel, thorium or [[depleted uranium]]) into burnable [[fissile]] fuel.<ref>"With Disposal Uncertain, Waste Burning Reactors Gain Traction – EM2 to Burn LWR Fuel," Nuclear New Build Monitor, March 15, 2010</ref> First generation EM2 units use enriched uranium starters (approximately 15 percent [[U235]]) to initiate the conversion process.<ref>{{Cite journal |last = Choi |first = H. |title = A Compact Gas-Cooled Fast Reactor with an Ultra-Long Fuel Cycle |journal = Science and Technology of Nuclear Installations |volume = 2013 |pages = 1–10 |doi = 10.1155/2013/618707 |year = 2013 |doi-access = free }}</ref> The starter U235 is consumed as the fertile material is converted to fissile fuel. The core life expectancy is approximately 30 years without refueling or reshuffling the fuel.
|