Local zeta function: Difference between revisions

Content deleted Content added
added link
No edit summary
Line 3:
:<math>Z(V, s) = \exp\left(\sum_{m = 1}^\infty \frac{N_m}{m} (q^{-s})^m\right)</math>
 
where {{mvar|V}} is a [[non-singular]] {{mvar|n}}-dimensional [[projective algebraic variety]] over the field {{math|'''F'''<sub>''q''</sub>}} with {{mvar|q}} elements and {{math|''N''<sub>''m''</sub>}} is the number of points of {{mvar|''V''}} defined over the finite field extension {{math|'''F'''<sub>''q''<sup>''m''</sup></sub>}} of {{math|'''F'''<sub>''q''</sub>}}.<ref>Section MakingV.2 the variable transformationof {{math|''u''&nbsp;{{=}}&nbsp;''q''<sup>−''s''</sup>,}} givesCitation
| last=Silverman
| first=Joseph H.
| author-link=Joseph H. Silverman
| title=The arithmetic of elliptic curves
| publisher=[[Springer-Verlag]]
| ___location=New York
| series=[[Graduate Texts in Mathematics]]
| isbn=978-0-387-96203-0
| mr=1329092
| year=1992
| volume=106
}}</ref>
 
Making the variable transformation {{math|''u''&nbsp;{{=}}&nbsp;''q''<sup>−''s''</sup>,}} gives
:<math>
\mathit{Z} (V,u) = \exp