Problemi irrisolti in matematica: differenze tra le versioni

Contenuto cancellato Contenuto aggiunto
m incipit
Storia: Corretto errore di battitura
Etichette: Modifica da mobile Modifica da applicazione mobile Modifica da applicazione Android
Riga 9:
Molto feconda si è mostrata, poi, in alcuni casi, una soluzione di tipo "negativo", attraverso la dimostrazione dell'impossibilità del risultato prospettato dal quesito. Ne sono esempi notevoli i due grandi problemi aperti lasciati in eredità dalla [[matematica greca]]: la [[duplicazione del cubo]] e l'indipendenza del [[quinto postulato di Euclide]] (il cosiddetto "assioma delle parallele") nell'ambito dello [[Postulati di Euclide|schema di postulati geometrici sistematizzati]] negli ''[[Elementi di Euclide|Elementi]]'' di [[Euclide]]<ref name="C. Procesi"/>. La soluzione di quest'ultimo ha richiesto la scoperta che esistono le cosiddette [[geometrie non euclidee]], nel quale il quinto postulato non è soddisfatto, che hanno aperto nuove strade allo studio e alla comprensione della matematica, con lo studio delle geometrie in base al loro [[gruppo di simmetria|gruppo di simmetrie]]<ref name="C. Procesi"/>.
 
Lo studio della quadratura del cerchio, invece, ha portato alla distinzione tra [[numeri algebrici]] e [[numeri trascendenti]], che investe sia l'[[algebra astratta]] sia l'[[analisi matematica]], visto che la dimostrazione della trascendenza di [[pi greco]] ha richiedorichiesto strumenti e metodi del [[calcolo infinitesimale]]<ref name="C. Procesi"/>.
 
A dispetto della profondità delle questioni soggiacenti, e delle tecniche matematiche che ne permettono la "trattabilità", molti problemi aperti ammettono una formulazione in termini assai elementari e di estrema semplicità, accessibile anche alla comprensione di un profano della materia: esempi di queste formulazioni elementari sono i già citati problemi di costruzione con riga e compasso, a cui si possono aggiungere altri, come la [[congettura di Goldbach]], concernente forme di regolarità nella [[distribuzione dei numeri primi]], oppure il [[teorema dei quattro colori]], o il celebre [[ultimo teorema di Fermat]].