Electrostatic particle accelerator: Difference between revisions

Content deleted Content added
Rewrite lead for clarity
Details: Change "details" to "applications," rewrite for accuracy, add citation.
Line 10:
Electrostatic accelerators are occasionally confused with [[linear accelerator]]s (linacs). While both accelerate particles in a straight line, electrostatic accelerators use a fixed accelerating field from a single high voltage source, while linacs use oscillating electric fields across a series of accelerating gaps.
 
== DetailsApplications ==
Although these machines accelerate [[atomic nuclei]], the scope of application is not limited to the nuclear sciences of [[nuclear physics]], [[nuclear astrophysics]] and [[nuclear chemistry]]. Indeed, those applications are outweighed by other uses of nuclear beams. Of the approximately 26,000 accelerators worldwide, ~44% are for [[radiotherapy]], ~41% for [[ion implantation]], ~9% for industrial processing and research, ~4% for biomedical and other low-energy research (less than 1% are higher energy machines).<ref>According to William Barletta, director of USPAS, the US Particle Accelerator School, per Toni Feder, in ''Physics Today'' February 2010, "Accelerator school travels university circuit", p. 20</ref>
 
Electrostatic accelerators have a wide array of applications in science and industry. In the realm of fundamental research, they are used to provide beams of [[atomic nuclei]] for research at energies up to several hundreds of [[electron volt|MeV]]. They are also used as the initial stage of most large multi-stage machines, such as the [[Large Hadron Collider]].
These accelerators are being used for [[nuclear medicine]] in [[medical physics]], sample analysis using techniques such as [[PIXE]] in the [[material science]]s, depth profiling in [[Solid-state physics|solid state physics]], and to a lesser extent secondary ion mass spectrometry in [[geology|geologic]] and [[Cosmochemistry|cosmochemical]] works, and even neutron beams can be made from the charged particles emerging from these accelerators to perform [[Neutron diffraction|neutron crystallography]] in [[condensed matter physics]]. The principles used in electrostatic nuclear accelerators could be used to accelerate any charged particles, but [[particle physics]] operates at much higher energy regimes than these machines can achieve, and there are various better methods suited for making [[Cathode ray|electron beams]], so these accelerators are used for accelerating nuclei.
 
In industry and [[materials science]] they are used to produce ion beams for materials modification, including ion implantation and ion beam mixing. There are also a number of materials analysis techniques based on electrostatic acceleration of heavy ions, including [[Rutherford backscattering spectrometry]] (RBS), [[particle-induced X-ray emission]] (PIXE), [[accelerator mass spectrometry]] (AMS), [[Elastic recoil detection]] (ERD), and others.
A special application of electrostatic particle accelerator are dust accelerators in which nanometer to micrometer sized electrically charged dust particles are accelerated to speeds up to 100 km/s.<ref>{{cite journal |last1=Mocker |first1=A. |last2=Bugiel |first2=S. |last3=Auer |first3=S. |last4=Baust |first4=G. |last5=Collette |first5=A. |last6=Drake |first6=K. |last7=Fiege |first7=K. |last8=Grün |first8=E. |last9=Heckmann |first9=F. |last10=Helfert |first10=S. |last11=Hillier |first11=J. |last12=Kempf |first12=S. |last13=Matt |first13=G. |last14=Mellert |first14=T. |last15=Munsat |first15=T. |last16=Otto |first16=K. |last17=Postberg |first17=F. |last18=Röser |first18=H. P. |last19=Shu |first19=A. |last20=Strernovski |first20=Z. |last21=Srama |first21=R. |title=A 2 MV Van de Graaff accelerator as a tool for planetary and impact physics research |journal=Review of Scientific Instruments |date=September 2011 |volume=82 |issue=9 |page=95111-95111-8 |doi=10.1063/1.3637461 |url=https://ui.adsabs.harvard.edu/abs/2011RScI...82i5111M/abstract |access-date=27 April 2022 |bibcode=2011RScI...82i5111M}}</ref> Dust accelerators are used for impact cratering studies,<ref>{{cite journal |last1=Neukun |first1=G. |last2=Mehl |first2=A. |last3=Fechtig |first3=H. |last4=Zähringer |first4=J. |title=Impact phenomena of micrometeorites on lunar surface material |journal=Earth and Planetary Science Letters |date=March 1970 |volume=9 |issue=1 |page=31 |doi=10.1016/0012-821X(70)90095-6 |url=https://ui.adsabs.harvard.edu/abs/1970E%26PSL...8...31N/abstract |access-date=27 April 2022 |bibcode=1970E&PSL...8...31N}}</ref> calibration of [[impact ionization]] dust detectors,<ref>{{cite journal |last1=Grün |first1=E. |last2=Fechtig |first2=H. |last3=Hanner |first3=M. |last4=Kissel |first4=J. |last5=Lindblad |first5=B.A. |last6=Linkert |first6=D. |last7=Maas |first7=D. |last8=Morfill |first8=G.E. |last9=Zook |first9=H. |title=The Galileo Dust Detector |journal=Space Science Reviews |date=May 1992 |volume=60 |issue=1-4 |page=317-340 |doi=10.1007/BF00216860 |url=https://ui.adsabs.harvard.edu/abs/1992SSRv...60..317G/abstract |access-date=11 February 2022 |bibcode=1992SSRv...60..317G}}</ref> and meteor studies.<ref>{{cite journal |last1=Thomas |first1=E. |last2=Simolka |first2=J. |last3=DeLuca |first3=M. |last4=Horanyi |first4=M. |last5=Janches |first5=D. |last6=Marshall |first6=R |last7=Munsat |first7=T. |last8=Plane |first8=J. |last9=Sternovski |first9=Z. |title=Experimental setup for the laboratory investigation of micrometeoroid ablation using a dust accelerator |journal=Review of Scientific Instruments |date=March 2017 |volume=88 |issue=3 |page=id.034501 |doi=10.1063/1.4977832 |url=https://ui.adsabs.harvard.edu/abs/2017RScI...88c4501T/abstract |access-date=27 April 2022 |bibcode=2017RScI...88c4501T}}</ref>
 
Although these machines primarily accelerate [[atomic nuclei]], there are a number of compact machines used to accelerate [[electrons]] for industrial purposes including sterilization of medical instruments, x-ray production, and silicon wafer production.<ref name="hinterberger">{{cite web |last1=Hinterberger |first1=F |title=Electrostatic Accelerators |url=https://cds.cern.ch/record/1005042/files/p95.pdf |website=[[CERN]] |access-date=10 May 2022}}</ref>
 
A special application of electrostatic particle accelerator are dust accelerators in which nanometer to micrometer sized electrically charged dust particles are accelerated to speeds up to 100 km/s.<ref>{{cite journal |last1=Mocker |first1=A. |last2=Bugiel |first2=S. |last3=Auer |first3=S. |last4=Baust |first4=G. |last5=Collette |first5=A. |last6=Drake |first6=K. |last7=Fiege |first7=K. |last8=Grün |first8=E. |last9=Heckmann |first9=F. |last10=Helfert |first10=S. |last11=Hillier |first11=J. |last12=Kempf |first12=S. |last13=Matt |first13=G. |last14=Mellert |first14=T. |last15=Munsat |first15=T. |last16=Otto |first16=K. |last17=Postberg |first17=F. |last18=Röser |first18=H. P. |last19=Shu |first19=A. |last20=Strernovski |first20=Z. |last21=Srama |first21=R. |title=A 2 MV Van de Graaff accelerator as a tool for planetary and impact physics research |journal=Review of Scientific Instruments |date=September 2011 |volume=82 |issue=9 |page=95111-95111-8 |doi=10.1063/1.3637461 |url=https://ui.adsabs.harvard.edu/abs/2011RScI...82i5111M/abstract |access-date=27 April 2022 |bibcode=2011RScI...82i5111M}}</ref> Dust accelerators are used for impact cratering studies,<ref>{{cite journal |last1=Neukun |first1=G. |last2=Mehl |first2=A. |last3=Fechtig |first3=H. |last4=Zähringer |first4=J. |title=Impact phenomena of micrometeorites on lunar surface material |journal=Earth and Planetary Science Letters |date=March 1970 |volume=9 |issue=1 |page=31 |doi=10.1016/0012-821X(70)90095-6 |url=https://ui.adsabs.harvard.edu/abs/1970E%26PSL...8...31N/abstract |access-date=27 April 2022 |bibcode=1970E&PSL...8...31N}}</ref> calibration of [[impact ionization]] dust detectors,<ref>{{cite journal |last1=Grün |first1=E. |last2=Fechtig |first2=H. |last3=Hanner |first3=M. |last4=Kissel |first4=J. |last5=Lindblad |first5=B.A. |last6=Linkert |first6=D. |last7=Maas |first7=D. |last8=Morfill |first8=G.E. |last9=Zook |first9=H. |title=The Galileo Dust Detector |journal=Space Science Reviews |date=May 1992 |volume=60 |issue=1-4 |page=317-340 |doi=10.1007/BF00216860 |url=https://ui.adsabs.harvard.edu/abs/1992SSRv...60..317G/abstract |access-date=11 February 2022 |bibcode=1992SSRv...60..317G}}</ref> and meteor studies.<ref>{{cite journal |last1=Thomas |first1=E. |last2=Simolka |first2=J. |last3=DeLuca |first3=M. |last4=Horanyi |first4=M. |last5=Janches |first5=D. |last6=Marshall |first6=R |last7=Munsat |first7=T. |last8=Plane |first8=J. |last9=Sternovski |first9=Z. |title=Experimental setup for the laboratory investigation of micrometeoroid ablation using a dust accelerator |journal=Review of Scientific Instruments |date=March 2017 |volume=88 |issue=3 |page=id.034501 |doi=10.1063/1.4977832 |url=https://ui.adsabs.harvard.edu/abs/2017RScI...88c4501T/abstract |access-date=27 April 2022 |bibcode=2017RScI...88c4501T}}</ref>
 
== Single-ended machines ==