Content deleted Content added
TakuyaMurata (talk | contribs) m TakuyaMurata moved page Draft:Local invariant cycle theorem to Local invariant cycle theorem: ready to be put in mainspace |
TakuyaMurata (talk | contribs) |
||
Line 3:
is surjective.<ref>Editorial note: the first proof of the theorem was given by Clemens, apparently but this needs to be checked.</ref>
In algebraic geometry, Deligne proved the following analog.<ref>{{harvnb|Deligne|1980|loc=Théorème 3.6.1.}}</ref><ref>{{harvnb|Deligne|1980|loc=(3.6.4.)}}</ref> Given a proper morphism <math>f : X \to S</math> over the spectrum <math>S</math> of the henselization of <math>k[T]</math>, <math>k</math> an algebraically closed field, if <math>X</math> is essentially smooth over <math>k</math> and <math>X_{\overline{\eta}}</math> is smooth over <math>\overline{\eta}</math>, then the homomorphism on <math>\mathbb{Q}</math>-cohomology:
:<math>\operatorname{H}^*(X_s) \to \operatorname{H}^*(X_{\overline{\eta}})^{\operatorname{Gal}(\overline{\eta}/\eta)}</math>
is surjective, where <math>s, \eta</math> are the special and generic points and the homomorphism is the composition <math>\operatorname{H}^*(X_s) \simeq \operatorname{H}^*(X) \to \operatorname{H}^*(X_{\eta}) \to \operatorname{H}^*(X_{\overline{\eta}}).</math>
|