Cantor's first set theory article: Difference between revisions

Content deleted Content added
m v2.04b - Fix errors for CW project (Template value ends with break)
m Remove {{eq}}, which is not going to work after its target becomes a magic word.
Line 6:
Cantor's article also contains a proof of the existence of [[transcendental number]]s. Both [[constructive proof|constructive and non-constructive proofs]] have been presented as "Cantor's proof." The popularity of presenting a non-constructive proof has led to a misconception that Cantor's arguments are non-constructive. Since the proof that Cantor published either constructs transcendental numbers or does not, an analysis of his article can determine whether or not this proof is constructive.<ref>{{harvnb|Gray|1994|pp=819&ndash;821}}.</ref> Cantor's correspondence with [[Richard Dedekind]] shows the development of his ideas and reveals that he had a choice between two proofs: a non-constructive proof that uses the uncountability of the real numbers and a constructive proof that does not use uncountability.
 
Historians of mathematics have examined Cantor's article and the circumstances in which it was written. For example, they have discovered that Cantor was advised to leave out his uncountability theorem in the article he submitted{{space|hair|4}} {{space|hair|4}} he added it during [[Galley proof|proofreading]]. They have traced this and other facts about the article to the influence of [[Karl Weierstrass]] and [[Leopold Kronecker]]. Historians have also studied Dedekind's contributions to the article, including his contributions to the theorem on the countability of the real algebraic numbers. In addition, they have recognized the role played by the uncountability theorem and the concept of countability in the development of set theory, [[measure theory]], and the [[Lebesgue integral]].
 
==The article==
Line 298:
|[Page 7]<br>
{{space|5}}Since the numbers α', α<nowiki>''</nowiki>, α<nowiki>'''</nowiki>,&nbsp;.&nbsp;.&nbsp;., α<sup>(ν)</sup>,&nbsp;.&nbsp;.&nbsp;. are continually increasing by value while simultaneously being enclosed in the interval [α,&nbsp;β], they have, by a well-known fundamental theorem of the theory of magnitudes [see note 2 below], a limit that we denote by A, so that:<br>
{{space|12}}{{nowrap|A {{eq}}&#61; Lim α<sup>(ν)</sup> for ν {{eq}}&#61; ∞.}}
 
{{space|5}}The same applies to the numbers β', β<nowiki>''</nowiki>, β<nowiki>'''</nowiki>,&nbsp;.&nbsp;.&nbsp;., β<sup>(ν)</sup>,&nbsp;.&nbsp;.&nbsp;., which are continually decreasing and likewise lying in the interval [α,&nbsp;β]. We call their limit B, so that:<br>
{{space|12}}{{nowrap|B {{eq}}&#61; Lim β<sup>(ν)</sup> for ν {{eq}}&#61; ∞.}}
 
{{space|5}}Obviously, one has:<br>
Line 309:
to the assumption.
 
{{space|5}}Thus, there only remains the case A&nbsp;{{eq}}&#61;&nbsp;B and now it is demonstrated that the number:<br>
{{space|12}}η&nbsp;{{eq}}&#61;&nbsp;A&nbsp;{{eq}}&#61;&nbsp;B<br>
does ''not'' occur in our sequence (ω).
 
{{space|5}}If it were a member of our sequence, such as the ν<sup>th</sup>, then one would have: η {{eq}}&#61; ω<sub>ν</sub>.
 
{{space|5}}But the latter equation is not possible for any value of ν because η is in the ''interior'' of the interval [α<sup>(ν)</sup>,&nbsp;β<sup>(ν)</sup>], but ω<sub>ν</sub> lies ''outside'' of it.
Line 319:
|{{lang-de|[Seite 7]<br>
{{space|5}}Da die Zahlen α', α<nowiki>''</nowiki>, α<nowiki>'''</nowiki>, &nbsp;.&nbsp;.&nbsp;., α<sup>(ν)</sup>, &nbsp;.&nbsp;.&nbsp;. ihrer Grösse nach fortwährend wachsen, dabei jedoch im Intervalle (α&nbsp;.&nbsp;.&nbsp;.&nbsp;β) eingeschlossen sind, so haben sie, nach einem bekannten Fundamentalsatze der Grössenlehre, eine Grenze, die wir mit A bezeichnen, so dass:<br>
{{space|12}}{{nowrap|A {{eq}}&#61; Lim α<sup>(ν)</sup> für ν {{eq}}&#61; ∞.}}
 
{{space|5}}Ein Gleiches gilt für die Zahlen β', β<nowiki>''</nowiki>, β<nowiki>'''</nowiki>,&nbsp;.&nbsp;.&nbsp;., β<sup>(ν)</sup>,&nbsp;.&nbsp;.&nbsp;. welche fortwährend abnehmen und dabei ebenfalls im Intervalle (α&nbsp;.&nbsp;.&nbsp;.&nbsp;β) liegen; wir nennen ihre Grenze B, so dass:<br>
{{space|12}}{{nowrap|B {{eq}}&#61; Lim β<sup>(ν)</sup> für ν {{eq}}&#61; ∞.}}
 
{{space|5}}Man hat offenbar:<br>
Line 329:
{{space|5}}Es ist aber leicht zu sehen, dass der Fall A&nbsp;<&nbsp;B hier ''nicht'' vorkommen kann; da sonst jede Zahl ω<sub>ν</sub>, unserer Reihe ''ausserhalb'' des Intervalles (A&nbsp;.&nbsp;.&nbsp;.&nbsp;B) liegen würde, indem ω<sub>ν</sub>, ausserhalb des Intervalls (α<sup>(ν)</sup> . . . β<sup>(ν)</sup>) gelegen ist; unsere Reihe (ω) wäre im Intervall (α&nbsp;.&nbsp;.&nbsp;.&nbsp;β) ''nicht überalldicht,'' gegen die Voraussetzung.
 
{{space|5}}Es bleibt daher nur der Fall A&nbsp;{{eq}}&#61;&nbsp;B übrig und es zeigt sich nun, dass die Zahl:<br>
{{space|12}}{{nowrap|η {{eq}}&#61; A {{eq}}&#61; B}}<br>
in unserer Reihe (ω) ''nicht'' vorkommt.
 
{{space|5}}Denn, würde sie ein Glied unserer Reihe sein, etwa das ν<sup>te</sup>, so hätte man: η {{eq}}&#61; ω<sub>ν</sub>.
 
{{space|5}}Die letztere Gleichung ist aber für keinen Werth von v möglich, weil η im ''Innern'' des Intervalls [α<sup>(ν)</sup>,&nbsp;β<sup>(ν)</sup>], ω<sub>ν</sub> aber ''ausserhalb'' desselben liegt.|label=none|italic=unset}}