Ordinal collapsing function: Difference between revisions

Content deleted Content added
No inline citation
Oops
Line 1:
{{No citations}}
{{Unreferenced|June 2022}}
In [[mathematical logic]] and [[set theory]], an '''ordinal collapsing function''' (or '''projection function''') is a technique for defining ([[Ordinal notation|notations]] for) certain [[Recursive ordinal|recursive]] [[large countable ordinal]]s, whose principle is to give names to certain ordinals much larger than the one being defined, perhaps even [[Large cardinal property|large cardinals]] (though they can be replaced with [[Large countable ordinal#Beyond admissible ordinals|recursively large ordinals]] at the cost of extra technical difficulty), and then "collapse" them down to a system of notations for the sought-after ordinal. For this reason, ordinal collapsing functions are described as an [[Impredicativity|impredicative]] manner of naming ordinals.