Content deleted Content added
Extend formula for clarity |
→History: divide and conquer is a very general term applicable to zillions of algorithms |
||
Line 30:
The standard procedure for multiplication of two ''n''-digit numbers requires a number of elementary operations proportional to <math>n^2\,\!</math>, or <math>O(n^2)\,\!</math> in [[big-O notation]]. [[Andrey Kolmogorov]] conjectured that the traditional algorithm was ''[[asymptotically optimal]],'' meaning that any algorithm for that task would require <math>\Omega(n^2)\,\!</math> elementary operations.
In 1960, Kolmogorov organized a seminar on mathematical problems in [[cybernetics]] at the [[Moscow State University]], where he stated the <math>\Omega(n^2)\,\!</math> conjecture and other problems in the [[Computational complexity theory|complexity of computation]]. Within a week, Karatsuba, then a 23-year-old student, found an algorithm
==Algorithm==
|