Cartesian parallel manipulators: Difference between revisions

Content deleted Content added
m v2.04b - Fix errors for CW project (Link with encoded space)
Citation bot (talk | contribs)
Alter: isbn. Add: volume, series, doi, year, s2cid, pages, authors 1-1. Removed proxy/dead URL that duplicated identifier. Removed parameters. Formatted dashes. Some additions/deletions were parameter name changes. Upgrade ISBN10 to 13. | Use this bot. Report bugs. | Suggested by Headbomb | Linked from Wikipedia:WikiProject_Academic_Journals/Journals_cited_by_Wikipedia/Sandbox | #UCB_webform_linked 28/176
Line 6:
 
== Description ==
Cartesian parallel manipulators are in the intersection of two broader categories of manipulators: [[Cartesian coordinate robot|Cartesian]] and [[Parallel manipulator|parallel]]. Cartesian manipulators are driven by mutually perpendicular linear actuators. They generally have a one-to-one correspondence between the linear positions of the actuators and the ''X, Y, Z'' position coordinates of the moving platform, making them easy to control. Furthermore, Cartesian manipulators do not change the orientation of the moving platform. Most commonly, [[Cartesian coordinate robot|Cartesian manipulators]] are [[Serial manipulator|serial]]-connected; i.e., they consist of a single [[Linkage (mechanical)|kinematic linkage]] chain, i.e. the first linear actuator moves the second one and so on. On the other hand, Cartesian parallel manipulators are parallel-connected, i.e. they consist of multiple kinematic linkages. Parallel-connected manipulators have innate advantages<ref>Z. Pandilov, V. Dukovski, Comparison of the characteristics between serial and parallel robots, Acta Technica Corviniensis-Bulletin of Engineering, Volume 7, Issue 1, Pages 143-160</ref> in terms of stiffness,<ref>{{Cite journal|lastlast1=Geldart|firstfirst1=M|last2=Webb|first2=P|last3=Larsson|first3=H|last4=Backstrom|first4=M|last5=Gindy|first5=N|last6=Rask|first6=K|date=2003|title=A direct comparison of the machining performance of a variax 5 axis parallel kinetic machining centre with conventional 3 and 5 axis machine tools|url=http://dx.doi.org/10.1016/s0890-6955(03)00119-6|journal=International Journal of Machine Tools and Manufacture|volume=43|issue=11|pages=1107–1116|doi=10.1016/s0890-6955(03)00119-6|issn=0890-6955}}</ref> precision,<ref>{{Cite journal|date=1997|title=Vibration control for precision manufacturing using piezoelectric actuators|url=http://dx.doi.org/10.1016/s0141-6359(97)81235-4|journal=Precision Engineering|volume=20|issue=2|pages=151|doi=10.1016/s0141-6359(97)81235-4|issn=0141-6359}}</ref> dynamic performance<ref>R. Clavel, inventor, S.A. SovevaSwitzerland, assignee. Device for the movement and positioning of an element in space, USA patent number, 4,976,582 (1990)</ref> <ref>{{Cite journal|last=Prempraneerach|first=Pradya|date=2014|title=Delta parallel robot workspace and dynamic trajectory tracking of delta parallel robot|url=http://dx.doi.org/10.1109/icsec.2014.6978242|journal=2014 International Computer Science and Engineering Conference (ICSEC)|pages=469–474 |publisher=IEEE|doi=10.1109/icsec.2014.6978242|isbn=978-1-4799-4963-2|s2cid=14227646 }}</ref> and in supporting heavy loads.<ref> 
 
 Stewart D. A Platform with Six Degrees of Freedom. Proceedings of the Institution of Mechanical Engineers. 1965;180(1):371-386. doi:10.1243/PIME_PROC_1965_180_029_02
Line 16:
 
=== Multipteron family ===
Members of the Multipteron <ref>{{Cite journal|lastlast1=Gosselin|firstfirst1=Clement M.|last2=Masouleh|first2=Mehdi Tale|last3=Duchaine|first3=Vincent|last4=Richard|first4=Pierre-Luc|last5=Foucault|first5=Simon|last6=Kong|first6=Xianwen|title=Parallel Mechanisms of the Multipteron Family: Kinematic Architectures and Benchmarking|url=http://dx.doi.org/10.1109/robot.2007.363045|journal=Proceedings 2007 IEEE International Conference on Robotics and Automation|year=2007 |pages=555–560 |publisher=IEEE|doi=10.1109/robot.2007.363045|isbn=978-1-4244-0602-19|s2cid=5755981 }}</ref> family of manipulators have either 3, 4, 5 or 6 degrees of freedom (DoF). The Tripteron 3-DoF member has three translation degrees of freedom ''3T'' DoF, with the subsequent members of the Multipteron family each adding a rotational ''R'' degree of freedom. Each member of the family has mutually perpendicular linear actuators connected to a fixed base. The moving platform is typically attached to the linear actuators through three geometrically parallel revolute ''R'' joints. See [[Kinematic pair]] for a description of shorthand joint notation used to describe manipulator configurations, like revolute ''R'' joint for example.
 
==== Tripteron ====
[[File:Tripteron robot.jpg|thumb|Tripteron]]
The 3-DoF Tripteron<ref>Gosselin, C. M., and Kong, X., 2004, “Cartesian Parallel Manipulators,” U.S. Patent No. 6,729,202</ref> <ref>Xianwen Kong, Clément M. Gosselin, Kinematics and Singularity Analysis of a Novel Type of 3-CRR 3-DOF Translational Parallel Manipulator, The International Journal of Robotics Research Vol. 21, No. 9, September 2002, pp. 791-7</ref> <ref>{{Citation|lastlast1=Kong|firstfirst1=Xianwen|title=Type Synthesis of Linear Translational Parallel Manipulators|date=2002|url=http://dx.doi.org/10.1007/978-94-017-0657-5_48|work=Advances in Robot Kinematics|pages=453–462|place=Dordrecht|publisher=Springer Netherlands|isbn=978-90-481-6054-9|access-date=2020-12-14|last2=Gosselin|first2=Clément M.|doi=10.1007/978-94-017-0657-5_48 }}</ref> <ref>{{Citation|lastlast1=Kim|firstfirst1=Han Sung|title=Evaluation of a Cartesian Parallel Manipulator|date=2002|url=http://dx.doi.org/10.1007/978-94-017-0657-5_3|work=Advances in Robot Kinematics|pages=21–28|place=Dordrecht|publisher=Springer Netherlands|isbn=978-90-481-6054-9|access-date=2020-12-14|last2=Tsai|first2=Lung-Wen|doi=10.1007/978-94-017-0657-5_3 }}</ref><ref>{{Citation|lastlast1=Elkady|firstfirst1=Ayssam|title=Cartesian Parallel Manipulator Modeling, Control and Simulation|date=2008-04-01|url=http://dx.doi.org/10.5772/5435|work=Parallel Manipulators, towards New Applications|publisher=I-Tech Education and Publishing|isbn=978-3-902613-40-0|access-date=2020-12-22|last2=Elkobrosy|first2=Galal|last3=Hanna|first3=Sarwat|last4=Sobh|first4=Tarek|doi=10.5772/5435 }}</ref> member of the Multipteron family has three parallel-connected kinematic chains consisting of a linear actuator (active prismatic ''<u>P</u>'' joint) in series with three revolute ''R'' joints ''3(<u>P</u>RRR).'' Similar manipulators, with three parallelogram ''Pa'' limbs ''3(<u>PR</u>PaR)'' are the Orthoglide<ref>{{Citation|lastlast1=Wenger|firstfirst1=P.|title=Kinematic Analysis of a New Parallel Machine Tool: The Orthoglide|date=2000|url=http://dx.doi.org/10.1007/978-94-011-4120-8_32|work=Advances in Robot Kinematics|pages=305–314|place=Dordrecht|publisher=Springer Netherlands|isbn=978-94-010-5803-2|access-date=2020-12-14|last2=Chablat|first2=D.|doi=10.1007/978-94-011-4120-8_32 |s2cid=5485837 }}</ref> <ref>{{Cite journal|lastlast1=Chablat|firstfirst1=D.|last2=Wenger|first2=P.|date=2003|title=Architecture optimization of a 3-DOF translational parallel mechanism for machining applications, the orthoglide|url=http://dx.doi.org/10.1109/tra.2003.810242|journal=IEEE Transactions on Robotics and Automation|volume=19|issue=3|pages=403–410|doi=10.1109/tra.2003.810242|issn=1042-296X|arxiv=0708.3381|s2cid=3263909 }}</ref> and Parallel cube-manipulator.<ref>{{Cite journal|lastlast1=Liu|firstfirst1=Xin-Jun|last2=Jeong|first2=Jay il|last3=Kim|first3=Jongwon|date=2003-10-24|title=A three translational DoFs parallel cube-manipulator|url=http://dx.doi.org/10.1017/s0263574703005198|journal=Robotica|volume=21|issue=6|pages=645–653|doi=10.1017/s0263574703005198|s2cid=35529910 |issn=0263-5747}}</ref> The Pantepteron<ref>{{Cite journal|lastlast1=Briot|firstfirst1=S.|last2=Bonev|first2=I. A.|date=2009-01-06|title=Pantopteron: A New Fully Decoupled 3DOF Translational Parallel Robot for Pick-and-Place Applications|url=http://dx.doi.org/10.1115/1.3046125|journal=Journal of Mechanisms and Robotics|volume=1|issue=2|doi=10.1115/1.3046125|issn=1942-4302}}</ref> is also similar to the Tripteron, with pantograph linkages to speed up the motion of the platform.
 
==== Qudrupteron ====
[[File:Quadrupteron robot.jpg|thumb|Quadrupteron]]
The 4-DoF Qudrupteron<ref>{{Cite journal|last=Gosselin|first=C|date=2009-01-06|title=Compact dynamic models for the tripteron and quadrupteron parallel manipulators|url=http://dx.doi.org/10.1243/09596518jsce605|journal=Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering|volume=223|issue=1|pages=1–12|doi=10.1243/09596518jsce605|s2cid=61817314|issn=0959-6518}}</ref> has ''3T1R'' DoF with (''3<u>P</u>RRU)(<u>P</u>RRR)'' joint topology.
 
==== Pentapteron ====
The 5-DoF Pentateron<ref>{{Cite journal|lastlast1=Gosselin|firstfirst1=Clement M.|last2=Masouleh|first2=Mehdi Tale|last3=Duchaine|first3=Vincent|last4=Richard|first4=Pierre-Luc|last5=Foucault|first5=Simon|last6=Kong|first6=Xianwen|date=2007|title=Parallel Mechanisms of the Multipteron Family: Kinematic Architectures and Benchmarking|url=http://dx.doi.org/10.1109/robot.2007.363045|journal=Proceedings 2007 IEEE International Conference on Robotics and Automation|pages=555–560 |publisher=IEEE|doi=10.1109/robot.2007.363045|isbn=978-1-4244-0602-19|s2cid=5755981 }}</ref> has ''3T2R'' DoF with ''5(<u>P</u>RRRR)'' joint topology.
 
==== Hexapteron ====
The 6-DoF Hexapteron<ref>{{Cite journal|lastlast1=Seward|firstfirst1=Nicholas|last2=Bonev|first2=Ilian A.|date=2014|title=A new 6-DOF parallel robot with simple kinematic model|url=http://dx.doi.org/10.1109/icra.2014.6907449|journal=2014 IEEE International Conference on Robotics and Automation (ICRA)|pages=4061–4066 |publisher=IEEE|doi=10.1109/icra.2014.6907449|isbn=978-1-4799-3685-4|s2cid=18895630 }}</ref> has ''3T3R'' DoF with ''6(<u>P</u>CRS)'' joint topology, with cylindrical ''C'' and spherical ''S'' joints.
 
=== Isoglide ===
The Isoglide family<ref>{{Cite journal|last=Gogu|first=Grigore|date=2004|title=Structural synthesis of fully-isotropic translational parallel robots via theory of linear transformations|url=http://dx.doi.org/10.1016/j.euromechsol.2004.08.006|journal=European Journal of Mechanics - A/Solids|volume=23|issue=6|pages=1021–1039|doi=10.1016/j.euromechsol.2004.08.006|issn=0997-7538}}</ref> <ref>{{Cite journal|last=Gogu|first=Grigore|date=2007|title=Structural synthesis of fully-isotropic parallel robots with Schönflies motions via theory of linear transformations and evolutionary morphology|url=http://dx.doi.org/10.1016/j.euromechsol.2006.06.001|journal=European Journal of Mechanics - A/Solids|volume=26|issue=2|pages=242–269|doi=10.1016/j.euromechsol.2006.06.001|issn=0997-7538}}</ref><ref>{{Citation|title=Structural synthesis|date=2008|url=http://dx.doi.org/10.1007/978-1-4020-5710-6_5|workseries=Solid Mechanics and its Applications |volume=149 |pages=299–328|place=Dordrecht|publisher=Springer Netherlands|doi=10.1007/978-1-4020-5710-6_5 |isbn=978-1-4020-5102-9|access-date=2020-12-14}}</ref><ref>{{Cite journal|last=Gogu|first=G.|date=2009|title=Structural synthesis of maximally regular T3R2-type parallel robots via theory of linear transformations and evolutionary morphology|url=http://dx.doi.org/10.1017/s0263574708004542|journal=Robotica|volume=27|issue=1|pages=79–101|doi=10.1017/s0263574708004542|s2cid=32809408 |issn=0263-5747}}</ref> includes many different Cartesian parallel manipulators from 2-6 DoF.
 
=== Xactuator ===
[[File:Xactuator real hardware.jpg|thumb|Xactuator]]
The 4-DoF or 5-DoF Coupled Cartesian manipulators family<ref>{{Cite journal|last=Wiktor|first=Peter|date=2020|title=Coupled Cartesian Manipulators|url=http://dx.doi.org/10.1016/j.mechmachtheory.2020.103903|journal=Mechanism and Machine Theory|volume=161 |pages=103903|doi=10.1016/j.mechmachtheory.2020.103903|issn=0094-114X|doi-access=free}}</ref> are gantry type Cartesian parallel manipulators with ''2T2R'' DoF or ''3T2R'' DoF.
 
== References ==