Content deleted Content added
GreenC bot (talk | contribs) Move 1 url. Wayback Medic 2.5 |
GreenC bot (talk | contribs) Rescued 1 archive link. Wayback Medic 2.5 |
||
Line 25:
The [[atmosphere]] is a [[fluid]]. As such, the idea of numerical weather prediction is to sample the state of the fluid at a given time and use the equations of [[fluid dynamics]] and [[thermodynamics]] to estimate the state of the fluid at some time in the future. The process of entering observation data into the model to generate [[initial value problem|initial conditions]] is called ''initialization''. On land, terrain maps available at resolutions down to {{convert|1|km|mi|1|sp=us}} globally are used to help model atmospheric circulations within regions of rugged topography, in order to better depict features such as downslope winds, [[Lee wave|mountain wave]]s and related cloudiness that affects incoming solar radiation.<ref>{{cite book|url=https://books.google.com/books?id=lMXSpRwKNO8C&pg=PA56|title=Parameterization schemes: keys to understanding numerical weather prediction models|author=Stensrud, David J.|page=56|year=2007|publisher=Cambridge University Press|isbn=978-0-521-86540-1}}</ref> The main inputs from country-based weather services are observations from devices (called [[radiosonde]]s) in weather balloons that measure various atmospheric parameters and transmits them to a fixed receiver, as well as from [[weather satellite]]s. The [[World Meteorological Organization]] acts to standardize the instrumentation, observing practices and timing of these observations worldwide. Stations either report hourly in [[METAR]] reports,<ref>{{cite web|title=Key to METAR Surface Weather Observations|url=http://www.ncdc.noaa.gov/oa/climate/conversion/swometardecoder.html|publisher=[[National Oceanic and Atmospheric Administration]]|access-date=2011-02-11|author=[[National Climatic Data Center]]|date=2008-08-20|archive-date=2002-11-01|archive-url=https://web.archive.org/web/20021101221848/http://www0.ncdc.noaa.gov/oa/climate/conversion/swometardecoder.html|url-status=dead}}</ref> or every six hours in [[SYNOP]] reports.<ref>{{cite web|title=SYNOP Data Format (FM-12): Surface Synoptic Observations|publisher=[[UNISYS]]|archive-url=https://web.archive.org/web/20071230100059/http://weather.unisys.com/wxp/Appendices/Formats/SYNOP.html|archive-date=2007-12-30|date=2008-05-25|url=http://weather.unisys.com/wxp/Appendices/Formats/SYNOP.html}}</ref> These observations are irregularly spaced, so they are processed by [[data assimilation]] and objective analysis methods, which perform quality control and obtain values at locations usable by the model's mathematical algorithms.<ref name="Krishnamurti Annu Rev FM">{{cite journal|last=Krishnamurti|first=T. N.|title=Numerical Weather Prediction|journal=[[Annual Reviews (publisher)|Annual Review of Fluid Mechanics]]|date=January 1995|volume=27|issue=1|pages=195–225|doi=10.1146/annurev.fl.27.010195.001211|bibcode=1995AnRFM..27..195K}}</ref> The data are then used in the model as the starting point for a forecast.<ref>{{cite web|title=The WRF Variational Data Assimilation System (WRF-Var)|publisher=[[University Corporation for Atmospheric Research]]|archive-url=https://web.archive.org/web/20070814044336/http://www.mmm.ucar.edu/wrf/WG4/wrfvar/wrfvar-tutorial.htm|archive-date=2007-08-14|date=2007-08-14|url=http://www.mmm.ucar.edu/wrf/WG4/wrfvar/wrfvar-tutorial.htm}}</ref>
A variety of methods are used to gather observational data for use in numerical models. Sites launch radiosondes in weather balloons which rise through the [[troposphere]] and well into the [[stratosphere]].<ref>{{cite web|last=Gaffen|first=Dian J.|title=Radiosonde Observations and Their Use in SPARC-Related Investigations|archive-url=https://web.archive.org/web/20070607142822/http://www.aero.jussieu.fr/~sparc/News12/Radiosondes.html|archive-date=2007-06-07|date=2007-06-07|url=http://www.aero.jussieu.fr/~sparc/News12/Radiosondes.html}}</ref> Information from weather satellites is used where traditional data sources are not available. Commerce provides [[pilot report]]s along aircraft routes<ref>{{cite journal|last=Ballish|first=Bradley A.|author2=V. Krishna Kumar |title=Systematic Differences in Aircraft and Radiosonde Temperatures|journal=[[Bulletin of the American Meteorological Society]]|date=November 2008|volume=89|issue=11|pages=1689–1708|doi=10.1175/2008BAMS2332.1|bibcode=2008BAMS...89.1689B|access-date=2011-02-16|url=http://amdar.noaa.gov/docs/bams_ballish_kumar.pdf}}</ref> and ship reports along shipping routes.<ref>{{cite web|author=National Data Buoy Center|url=http://www.vos.noaa.gov/vos_scheme.shtml|title=The WMO Voluntary Observing Ships (VOS) Scheme|access-date=2011-02-15|date=2009-01-28|publisher=[[National Oceanic and Atmospheric Administration]]}}</ref> Research projects use [[weather reconnaissance|reconnaissance aircraft]] to fly in and around weather systems of interest, such as [[tropical cyclone]]s.<ref name="Hurricane Hunters">{{cite web|year=2011|author=403rd Wing|url=http://www.hurricanehunters.com|title=The Hurricane Hunters|publisher=[[Hurricane Hunters|53rd Weather Reconnaissance Squadron]]|access-date=2006-03-30|archive-date=2012-
==Computation==
|