Partition function (number theory): Difference between revisions

Content deleted Content added
AnomieBOT (talk | contribs)
m Substing templates: {{Internetquelle}}. See User:AnomieBOT/docs/TemplateSubster for info.
m convert special characters found by Wikipedia:Typo Team/moss (via WP:JWB)
Line 130:
=== Definition and properties ===
 
If no summand occurs repeatedly<ref>{{cite web|title=code golf - Strict partitions of a positive integer|periodical=|publisher=|url=https://codegolf.stackexchange.com/questions/71941/strict-partitions-of-a-positive-integer|url-status=|format=|access-date=2022-03-09|archive-url=|archive-date=|last=|date=|year=|language=|pages=|quote=}}</ref> in the affected partition sums, then the so called strict partitions are present. The function Q(n) gives the number of these strict partitions in relation to the given sum n. Therefore the strict partition sequence Q(n) satisfies the criterion Q(n) ≤ P(n) for all <math>n \isin ℕ₀\mathbb{N}_0</math>. The same result<ref>{{cite web|title=A000009 - OEIS|periodical=|publisher=|url=https://oeis.org/A000009|url-status=|format=|access-date=2022-03-09|archive-url=|archive-date=|last=|date=|year=|language=|pages=|quote=}}</ref> results if only odd summands<ref>{{cite web|title=Partition Function Q|periodical=|publisher=|url=https://mathworld.wolfram.com/|url-status=|format=|access-date=2022-03-09|archive-url=|archive-date=|last=Eric W. Weisstein|date=|year=|language=en|pages=|quote=}}</ref> may appear in the partition sum, but these may also occur more than once.
 
=== Exemplary values of strict partition numbers ===
Line 183:
|}
=== MacLaurin Series ===
The corresponding generating function based on the [[MacLaurin series]] with the numbers Q(n) as coefficients in front of xⁿx<sup>n</sup> is as follows:
 
: <math>\sum_{k=0}^{\infty} Q(k)x^k = (x;x^2)_{\infty}^{-1} = \vartheta_{00}(x)^{1/6}\vartheta_{01}(x)^{-1/3}\biggl\{\frac{1}{16\,x}\bigl[\vartheta_{00}(x)^4 - \vartheta_{01}(x)^4\bigr]\biggr\}^{1/24}</math>