Applications of dual quaternions to 2D geometry: Difference between revisions

Content deleted Content added
Line 44:
<math display="block"> (A + Bi + C\varepsilon j + D\varepsilon k)^{-1} = \frac{A - Bi - C\varepsilon j - D\varepsilon k}{A^2+B^2}</math>
 
The set <math>\{1, i, \varepsilon j, \varepsilon k\}</math> forms a basis of the vector space ofdiscussed dual-complexin numbersthis article, where the scalars are real numbers.
 
The magnitude of a dual-complex numberquaternions of the form, discussed here is <math>q</math> is defined to be <math display="block">|q| = \sqrt{A^2 + B^2}.</math>
 
For applications in computer graphics, the number <math>A + Bi + C\varepsilon j + D\varepsilon k</math> is commonly represented as the 4-[[tuple]] <math>(A,B,C,D)</math>.