Content deleted Content added
No edit summary |
|||
Line 49:
:<math>x_k \le x_{k+1}</math>,
so <math>(x_k)_{k \geq 0}</math> is an increasing sequence contained in the bounded set <math>C_0</math>. The [[monotone convergence theorem]] for bounded sequences of real numbers now guarantees the existence of a [[Limit of a sequence|limit point]]
:<math>x=\lim_{k\to \infty} x_k.</math>
For fixed <math>k</math>, <math>x_j\in C_k</math> for all <math>j\geq k</math>, and since <math>C_k</math> is closed and <math>x</math> is a
== Variant in complete metric spaces ==
|