Content deleted Content added
→NAS Benchmarks: more directory |
added brief section on NAS benchmarks |
||
Line 20:
An alternative approach to NAS is based on [[evolutionary algorithm]]s, which has been employed by several groups.<ref>{{cite arXiv|last1=Real|first1=Esteban|last2=Moore|first2=Sherry|last3=Selle|first3=Andrew|last4=Saxena|first4=Saurabh|last5=Suematsu|first5=Yutaka Leon|last6=Tan|first6=Jie|last7=Le|first7=Quoc|last8=Kurakin|first8=Alex|date=2017-03-03|title=Large-Scale Evolution of Image Classifiers|eprint=1703.01041|class=cs.NE}}</ref><ref>{{Cite arXiv|last1=Suganuma|first1=Masanori|last2=Shirakawa|first2=Shinichi|last3=Nagao|first3=Tomoharu|date=2017-04-03|title=A Genetic Programming Approach to Designing Convolutional Neural Network Architectures|class=cs.NE|eprint=1704.00764v2|language=en}}</ref><ref name=":0">{{Cite arXiv|last1=Liu|first1=Hanxiao|last2=Simonyan|first2=Karen|last3=Vinyals|first3=Oriol|last4=Fernando|first4=Chrisantha|last5=Kavukcuoglu|first5=Koray|date=2017-11-01|title=Hierarchical Representations for Efficient Architecture Search|class=cs.LG|eprint=1711.00436v2|language=en}}</ref><ref name="Real 2018">{{cite arXiv|last1=Real|first1=Esteban|last2=Aggarwal|first2=Alok|last3=Huang|first3=Yanping|last4=Le|first4=Quoc V.|date=2018-02-05|title=Regularized Evolution for Image Classifier Architecture Search|eprint=1802.01548|class=cs.NE}}</ref><ref>{{cite arXiv|last1=Miikkulainen|first1=Risto|last2=Liang|first2=Jason|last3=Meyerson|first3=Elliot|last4=Rawal|first4=Aditya|last5=Fink|first5=Dan|last6=Francon|first6=Olivier|last7=Raju|first7=Bala|last8=Shahrzad|first8=Hormoz|last9=Navruzyan|first9=Arshak|last10=Duffy|first10=Nigel|last11=Hodjat|first11=Babak|date=2017-03-04|title=Evolving Deep Neural Networks|class=cs.NE|eprint=1703.00548}}</ref><ref>{{Cite journal|last1=Xie|first1=Lingxi|last2=Yuille|first2=Alan|title=Genetic CNN|url=https://ieeexplore.ieee.org/document/8237416|journal=2017 IEEE International Conference on Computer Vision (ICCV)|year=2017|pages=1388–1397|doi=10.1109/ICCV.2017.154|arxiv=1703.01513|isbn=978-1-5386-1032-9|s2cid=206770867}}</ref><ref name="Elsken 2018" /> An Evolutionary Algorithm for Neural Architecture Search generally performs the following procedure.<ref name="liu2021survey">{{cite journal|last1=Liu|first1=Yuqiao|last2=Sun|first2=Yanan|last3=Xue|first3=Bing|last4=Zhang|first4=Mengjie|last5=Yen|first5=Gary G|last6=Tan|first6=Kay Chen|title=A Survey on Evolutionary Neural Architecture Search|journal=IEEE Transactions on Neural Networks and Learning Systems|year=2021|volume=PP|pages=1–21|doi=10.1109/TNNLS.2021.3100554|pmid=34357870|arxiv=2008.10937|s2cid=221293236}}</ref> First a pool consisting of different candidate architectures along with their validation scores (fitness) is initialised. At each step the architectures in the candidate pool are mutated (eg: 3x3 convolution instead of a 5x5 convolution). Next the new architectures are trained from scratch for a few epochs and their validation scores are obtained. This is followed by replacing the lowest scoring architectures in the candidate pool with the better, newer architectures. This procedure is repeated multiple times and thus the candidate pool is refined over time. Mutations in the context of evolving ANNs are operations such as adding or removing a layer, which include changing the type of a layer (e.g., from convolution to pooling), changing the hyperparameters of a layer, or changing the training hyperparameters. On [[CIFAR-10]] and [[ImageNet]], evolution and RL performed comparably, while both slightly outperformed [[random search]].<ref name="Real 2018" /><ref name=":0" />
== Bayesian
[[Bayesian Optimization]] which has proven to be an efficient method for hyperparameter optimization can also be applied to NAS. In this context the objective function maps an architecture to its validation error after being trained for a number of epochs. At each iteration BO uses a surrogate to model this objective function based on previously obtained architectures and their validation errors. One then chooses the next architecture to evaluate by maximizing an acquisition function, such as expected improvement, which provides a balance between exploration and exploitation. Acquisition function maximization and objective function evaluation are often computationally expensive for NAS, and make the application of BO challenging in this context. Recently BANANAS<ref>{{cite arXiv|last1=White|first1=Colin|last2=Neiswanger|first2=Willie|last3=Savani|first3=Yash|date=2020-11-02|title=BANANAS: Bayesian Optimization with Neural Architectures for Neural Architecture Search|class=cs.LG|eprint=1910.11858}}</ref> has achieved promising results in this direction by introducing a high-performing instantiation of BO coupled to a neural predictor.
Line 41:
Differentiable NAS has shown to produce competitive results using a fraction of the search-time required by RL-based search methods. For example, FBNet (which is short for Facebook Berkeley Network) demonstrated that supernetwork-based search produces networks that outperform the speed-accuracy tradeoff curve of mNASNet and MobileNetV2 on the ImageNet image-classification dataset. FBNet accomplishes this using over 400x ''less'' search time than was used for mNASNet.<ref name="FBNet">{{cite arXiv|eprint=1812.03443|last1=Wu|first1=Bichen|title=FBNet: Hardware-Aware Efficient ConvNet Design via Differentiable Neural Architecture Search|last2=Dai|first2=Xiaoliang|last3=Zhang|first3=Peizhao|last4=Wang|first4=Yanghan|last5=Sun|first5=Fei|last6=Wu|first6=Yiming|last7=Tian|first7=Yuandong|last8=Vajda|first8=Peter|last9=Jia|first9=Yangqing|last10=Keutzer|first10=Kurt|class=cs.CV|date=24 May 2019}}</ref><ref name="MobileNetV2">{{cite arXiv|eprint=1801.04381|last1=Sandler|first1=Mark|title=MobileNetV2: Inverted Residuals and Linear Bottlenecks|last2=Howard|first2=Andrew|last3=Zhu|first3=Menglong|last4=Zhmoginov|first4=Andrey|last5=Chen|first5=Liang-Chieh|class=cs.CV|year=2018}}</ref><ref>{{Cite web|url=http://sites.ieee.org/scv-cas/files/2019/05/2019-05-22-ieee-co-design-trim.pdf|title=Co-Design of DNNs and NN Accelerators|last=Keutzer|first=Kurt|date=2019-05-22|website=IEEE|url-status=|archive-url=|archive-date=|access-date=2019-09-26}}</ref> Further, SqueezeNAS demonstrated that supernetwork-based NAS produces neural networks that outperform the speed-accuracy tradeoff curve of MobileNetV3 on the Cityscapes semantic segmentation dataset, and SqueezeNAS uses over 100x less search time than was used in the MobileNetV3 authors' RL-based search.<ref name="SqueezeNAS">{{cite arXiv|eprint=1908.01748|last1=Shaw|first1=Albert|title=SqueezeNAS: Fast neural architecture search for faster semantic segmentation|last2=Hunter|first2=Daniel|last3=Iandola|first3=Forrest|last4=Sidhu|first4=Sammy|class=cs.CV|year=2019}}</ref><ref>{{Cite news|url=https://www.eetimes.com/document.asp?doc_id=1335063|title=Does Your AI Chip Have Its Own DNN?|last=Yoshida|first=Junko|date=2019-08-25|work=EE Times|access-date=2019-09-26}}</ref>
== Neural architecture search benchmarks ==
Neural architecture search often requires large computational resources, due to its expensive training and evaluation phases. To overcome this limitation, NAS benchmarks<ref>Ying, C., Klein, A., Christiansen, E., Real, E., Murphy, K. and Hutter, F., 2019, May. Nas-bench-101: [[arxiv:1902.09635|Towards reproducible neural architecture search]]. In ''International Conference on Machine Learning'' (pp. 7105-7114). PMLR.</ref><ref>Zela, A., Siems, J. and Hutter, F., 2020. Nas-bench-1shot1: Benchmarking and dissecting one-shot neural architecture search. ''arXiv preprint [[arXiv:2001.10422]]''.</ref><ref>Dong, X. and Yang, Y., 2020. Nas-bench-201: Extending the scope of reproducible neural architecture search. ''arXiv preprint [[arXiv:2001.00326]]''.</ref><ref>Siems, J., Zimmer, L., Zela, A., Lukasik, J., Keuper, M. and Hutter, F., 2020. Nas-bench-301 and the case for surrogate benchmarks for neural architecture search. ''arXiv preprint [[arXiv:2008.09777]]''.</ref> have been introduced, from which one can either query or predict the final performance of neural architectures in seconds.
==See also==
|