Content deleted Content added
m Corrected some typos in section "As a set of independent binary regressions" |
|||
Line 93:
:<math>
\begin{align}
\Pr(Y_i=1) &= \frac{e^{\boldsymbol\beta_1 \cdot \mathbf{X}_i}}{1 + \sum_{j=
\\
\Pr(Y_i=2) &= \frac{e^{\boldsymbol\beta_2 \cdot \mathbf{X}_i}}{1 + \sum_{j=1
\cdots & \cdots \\
\Pr(Y_i=K-1) &= \frac{e^{\boldsymbol\beta_{K-1} \cdot \mathbf{X}_i}}{1 + \sum_{j=
\end{align}
</math>
where the summation runs from <math>1</math> to <math>K-1</math>
<math>
\begin{align}
\Pr(Y_i=k) = \frac{e^{\boldsymbol\beta_{
\end{align}
</math>
where <math>
The fact that we run multiple regressions reveals why the model relies on the assumption of [[independence of irrelevant alternatives]] described above.▼
\beta_K
▲</math> is defined to be zero. The fact that we run multiple regressions reveals why the model relies on the assumption of [[independence of irrelevant alternatives]] described above.
===Estimating the coefficients===
|