Content deleted Content added
Cleaning up accepted Articles for creation submission (AFCH 0.9.1) |
No edit summary |
||
Line 5:
==Definition==
Let us consider an entire function <math>f : \
The indicator function can be also defined for functions which are not entire but analytic inside an angle <math>D = \{z=re^{i\theta}:\alpha<\theta<\beta\}</math>.
Line 12:
==Basic properties==
By the very definition of the indicator function, we have that the indicator of the product of two functions does not exceed the sum of the indicators:<ref name="Levin2" />{{rp|pp=51-52}}
▲:<math>h_{fg}(\theta)\le h_f(\theta)+h_g(\theta).</math>
Similarly, the indicator of the sum of two functions does not exceed the larger of the two indicators:
<math display="block">h_{f+g}(\theta)\le \max\{h_f(\theta),h_g(\theta)\}.</math>▼
▲<math>h_{f+g}(\theta)\le \max\{h_f(\theta),h_g(\theta)\}.</math>
==Examples==
Elementary calculations show that, if <math>f(z)=e^{(A+iB)z^\rho}</math>, then <math>|f(re^{i\theta})|=e^{Ar^\rho\cos(\rho\theta)-Br^\rho\sin(\rho\theta)}</math>. Thus,<ref name="Levin2" />{{rp|p=52}}
▲:<math>h_f(\theta)=A\cos(\rho\theta)-B\sin(\rho\theta).</math>
In particular,
Another easily deducible indicator function is that of the [[reciprocal Gamma function]]. However, this function is of infinite type (and of order <math>\rho = 1</math>), therefore one needs to define the indicator function to be▼
▲:<math>h_{\exp}(\theta)=\cos(\theta).</math>
▲Another easily deducible indicator function is that of the [[reciprocal Gamma function]]. However, this function is of infinite type (and of order <math>\rho=1</math>), therefore one needs to define the indicator function to be
▲:<math>h_{1/\Gamma}(\theta)=\limsup_{r\to\infty}\frac{\log|1/\Gamma(re^{i\theta})|}{r\log r}.</math>
[[Stirling's approximation]] of the Gamma function then yields, that
Another example is that of the [[Mittag-Leffler function]] <math>E_\alpha</math>. This function is of order <math>\rho = 1/\alpha</math>, and<ref name="Cartwright">{{cite book |last1=Cartwright|first1=M. L. |title=Integral Functions |date=1962 |publisher=Cambridge Univ. Press |isbn=052104586X}}</ref>{{rp|p=50}}▼
▲:<math>h_{1/\Gamma}(\theta)=-\cos(\theta).</math>
▲Another example is that of the [[Mittag-Leffler function]] <math>E_\alpha</math>. This function is of order <math>\rho=1/\alpha</math>, and<ref name="Cartwright">{{cite book |last1=Cartwright|first1=M. L. |title=Integral Functions |date=1962 |publisher=Cambridge Univ. Press |isbn=052104586X}}</ref>{{rp|50}}
▲:<math>h_{E_\alpha}(\theta)=\begin{cases}\cos\left(\frac{\theta}{\alpha}\right),&\text{for }|\theta|\le\frac12\alpha\pi;\\0,&\text{otherwise}.\end{cases}</math>
==Further properties of the indicator==
Those <math>h</math> indicator functions which are of the form
are called <math>\rho</math>-trigonometrically convex (<math>A</math> and <math>B</math> are real constants). If <math>\rho = 1</math>, we simply say, that <math>h</math> is trigonometrically convex.
Such indicators have some special properties. For example, the following statements are all true for an indicator function that is trigonometrically convex at least on an interval {{nowrap|<math>(\alpha,\beta)</math>:}}<ref name="Levin" />{{rp|pp=55-57}}<ref name="Levin2" />{{rp|pp=54-61}}
* If <math>h(\theta_1)=-\infty</math> for a <math>\theta_1\in(\alpha,\beta)</math>, then <math>h = -\infty</math> everywhere in <math>(\alpha,\beta)</math>.
* If <math>h</math> is bounded on <math>(\alpha,\beta)</math>, then it is continuous on this interval. Moreover, <math>h</math> satisfies a [[Lipschitz condition]] on <math>(\alpha,\beta)</math>.
* If <math>h</math> is bounded on <math>(\alpha,\beta)</math>, then it has both left-hand-side and right-hand-side derivative at every point in the interval <math>(\alpha,\beta)</math>. Moreover, the left-hand-side derivative is not greater than the right-hand-side derivative. It also holds true, that the right-hand-side derivative is continuous from the right, while the left-hand-side derivative is continuous from the left.
* If <math>h</math> is bounded on <math>(\alpha,\beta)</math>, then it has a derivative at all points, except possibly on a countable set.
* If <math>h</math> is <math>\rho</math>-trigonometrically convex on <math>[\alpha,\beta]</math>, then <math>h(\theta)+h(\theta+\pi/\rho) \
== Notes ==
Line 60 ⟶ 54:
==References==
{{refbegin}}
* {{cite book |last1=Boas |first1=R. P. |title=Entire Functions |date=1954 |publisher=Academic Press |isbn=0121081508}}
* {{cite book |last1=Volkovyskii |first1=L. I. |last2=Lunts |first2=G. L. |last3= Aramanovich|first3=I. G.|title=A collection of problems on complex analysis |date=2011 |publisher=Dover Publications |isbn=978-0486669137}}
{{refend}}
[[Category:Complex analysis]]
|