Content deleted Content added
Salix alba (talk | contribs) m Fix deprecated maths syntax errors, see https://www.mediawiki.org/wiki/Extension:Math/Roadmap, replaced: \and → \land (8) |
|||
Line 238:
* Let <math>P(\alpha)</math> be the set of distinct terms in the Cantor normal form of <math>\alpha</math> (with each term of the form <math>\omega^\xi</math> for <math>\xi \in \mathsf{On}</math>, see [[Cantor normal form theorem]])
* <math>C^0_\nu(\alpha) = \Omega_\nu</math>
* <math>C^{n+1}_\nu(\alpha) = C^{n}_\nu(\alpha) \cup \{\psi_\nu(\xi) \mid \xi \in \alpha \cap C^{n}_\nu(\alpha) \
* <math>C_\nu(\alpha) = \bigcup\limits_{n < \omega} C^n_\nu(\alpha)</math>
* <math>\psi_\nu(\alpha) = \min(\{\gamma \mid \gamma \notin C_\nu(\alpha)\})</math>
Line 250:
* Define <math>\Omega_0 = 1</math> and <math>\Omega_\nu = \aleph_\nu</math> for <math>\nu > 0</math>.
* <math>C^0_\nu(\alpha) = \{\beta \mid \beta < \Omega_\nu\}</math>
* <math>C^{n+1}_\nu(\alpha) = \{\beta + \gamma, \psi_\mu(\eta) \mid \mu, \beta, \gamma, \eta \in C^{n}_\nu(\alpha) \
* <math>C_\nu(\alpha) = \bigcup\limits_{n < \omega} C^n_\nu(\alpha)</math>
* <math>\psi_\nu(\alpha) = \min(\{\gamma \mid \gamma \notin C_\nu(\alpha)\})</math>
Line 291:
* <math>C_0(\alpha, \beta) = \beta \cup \{0\}</math>
* <math>C_{n + 1}(\alpha, \beta) = \{\gamma + \delta \mid \gamma, \delta \in C_n(\alpha, \beta)\} \cup \{I(\gamma, \delta) \mid \gamma, \delta \in C_n(\alpha, \beta)\} \cup \{\psi_\pi(\gamma) \mid \pi, \gamma, \in C_n(\alpha, \beta) \
* <math>C(\alpha, \beta) = \bigcup\limits_{n < \omega} C_n(\alpha, \beta)</math>
* <math>\psi_\pi(\alpha) = \min(\{\beta < \pi \mid C(\alpha, \beta) \cap \pi \subseteq \beta \})</math>
Line 302:
* M<sup>0</sup> = <math>K \cap \mathsf{Lim}</math>, where Lim denotes the class of limit ordinals.
* For α > 0, M<sup>α</sup> is the set <math>\{\pi < K \mid C(\alpha, \pi) \cap K = \pi \
* <math>C(\alpha, \beta) </math> is the closure of <math>\beta \cup \{0, K\} </math> under addition, <math>(\xi, \eta) \rightarrow \varphi(\xi, \eta) </math>, <math>\xi \rightarrow \Omega_\xi </math> given ξ < K, <math>\xi \rightarrow \Xi(\xi) </math> given ξ < α, and <math>(\xi, \pi, \delta) \rightarrow \Psi^\xi_\pi(\delta) </math> given <math>\xi \leq \delta < \alpha </math>.
* <math>\Xi(\alpha) = \min(M^\alpha \cup \{K\}) </math>.
* For <math>\xi \leq \alpha </math>, <math>\Psi^\xi_\pi(\alpha) = \min(\{\rho \in M^\xi \cap \pi: C(\alpha, \rho) \cap \pi = \rho \
=== Collapsing large cardinals ===
|