Local invariant cycle theorem: Difference between revisions

Content deleted Content added
Line 4:
is surjective. The conjecture was first proved by Clemens. A version of the theorem is also a consequence of the [[BBD decomposition]].<ref>{{harvnb|Beilinson|Bernstein|Deligne|1982|loc=Corollaire 6.2.9.}}</ref>
 
Deligne also proved the following analog.<ref>{{harvnb|Deligne|1980|loc=Théorème 3.6.1.}}</ref><ref>{{harvnb|Deligne|1980|loc=(3.6.4.)}}</ref> Given a [[proper morphism]] <math>X \to S</math> over the spectrum <math>S</math> of the henselization of <math>k[T]</math>, <math>k</math> an algebraically closed field, if <math>X</math> is essentially smooth<!-- meaning? --> over <math>k</math> and <math>X_{\overline{\eta}}</math> smooth over <math>\overline{\eta}</math>, then the homomorphism on <math>\mathbb{Q}</math>-cohomology:
:<math>\operatorname{H}^*(X_s) \to \operatorname{H}^*(X_{\overline{\eta}})^{\operatorname{Gal}(\overline{\eta}/\eta)}</math>
is surjective, where <math>s, \eta</math> are the special and generic points and the homomorphism is the composition <math>\operatorname{H}^*(X_s) \simeq \operatorname{H}^*(X) \to \operatorname{H}^*(X_{\eta}) \to \operatorname{H}^*(X_{\overline{\eta}}).</math>