Content deleted Content added
highlighted topic |
mNo edit summary |
||
Line 1:
'''Biconditional introduction''' is the inference that, if B follows from A, and A follows from B, then A [[if and only if]] B.
For example: if I'm breathing, then I'm alive; also, if I'm alive, then I'm breathing. Therefore, I'm breathing if and only if I'm alive.
Line 8:
<u>( B → A ) </u>
∴ ( A ↔ B )
|