Schwarz triangle function: Difference between revisions

Content deleted Content added
Removing notice of move discussion
Line 24:
== Singular points ==
This mapping has [[regular singular points]] at ''z'' = 0, 1, and ∞, corresponding to the vertices of the triangle with angles πα, πγ, and πβ respectively. At these singular points,{{sfn|Nehari|1975|pages=315−316}}
:<math>s(0) = 0</math>, \begin{align}
:<math>s(10) &= 0, \\frac[4mu]
s(1) &= \frac
{\Gamma(1-a')\Gamma(1-b')\Gamma(c')}
{\Gamma(1-a)\Gamma(1-b)\Gamma(c)}</math>, and \\[8mu]
:<math>s(\infty) &= \exp\left(i \pi \alpha \right)\frac
{\Gamma(1-a')\Gamma(b)\Gamma(c')}
{\Gamma(1-a)\Gamma(b')\Gamma(c)}</math>,
\end{align}</math>
 
where Γ<math display=inline>\Gamma(x)</math> is the [[Gamma function]].
 
Near each singular point, the function may be approximated as so, using [[Big O notation]].
 
:<math>s_0(z)=z^\alpha (1+O(z))</math>,begin{align}
:<math>s_1s_0(z) &=(1- z)^\gammaalpha (1+O(1-z))</math>, and\\[6mu]
:<math>s_\inftys_1(z) &= (1-z)^\betagamma (1+O(\tfrac{1}{-z}))</math>., \\[6mu]
s_\infty(z) &= z^\beta (1+O(1/z)),
\end{align}</math>
 
where <math>O(x)</math> is [[Big O notation]].
 
== Inverse ==