While the Robbins–Monro algorithm is theoretically able to achieve <math display="inline"> O(1/n)</math> under the assumption of twice continuous differentiability and strong convexity, it can perform quite poorly upon implementation. This is primarily due to the fact that the algorithm is very sensitive to the choice of the step size sequence, and the supposed asymptotically optimal step size policy can be quite harmful in the beginning.<ref name="NJLS" /><ref name="jcsbook">[https://books.google.com/books?id=f66OIvvkKnAC&printsec=frontcover#v=onepage&q=%22Robbins-Monro%22&f=false Introduction to Stochastic Search and Optimization: Estimation, Simulation and Control], J.C. Spall, ''John Wiley'' ''Hoboken, NJ'', (2003).</ref>
Chung (1954)<ref>{{Cite journal|last=Chung|first=K. L.|date=1954-09-01|title=On a Stochastic Approximation Method|journal=The Annals of Mathematical Statistics|language=EN|volume=25|issue=3|pages=463–483|doi=10.1214/aoms/1177728716|issn=0003-4851|doi-access=free}}</ref>(1954) and Fabian (1968)<ref>{{Cite journal|last=Fabian|first=Vaclav|date=1968-08-01|title=On Asymptotic Normality in Stochastic Approximation|journal=The Annals of Mathematical Statistics|language=EN|volume=39|issue=4|pages=1327–1332|doi=10.1214/aoms/1177698258|issn=0003-4851|doi-access=free}}</ref>(1968) showed that we would achieve optimal convergence rate <math display="inline">O(1/\sqrt{n})</math> with <math display="inline">a_n=\bigtriangledown^2f(\theta^*)^{-1}/n</math> (or <math display="inline">a_n=\frac{1}{(nM'(\theta^*))}</math>). Lai and Robbins<ref>{{Cite journal|last1=Lai|first1=T. L.|last2=Robbins|first2=Herbert|date=1979-11-01|title=Adaptive Design and Stochastic Approximation|journal=The Annals of Statistics|language=EN|volume=7|issue=6|pages=1196–1221|doi=10.1214/aos/1176344840|issn=0090-5364|doi-access=free}}</ref><ref>{{Cite journal|last1=Lai|first1=Tze Leung|last2=Robbins|first2=Herbert|date=1981-09-01|title=Consistency and asymptotic efficiency of slope estimates in stochastic approximation schemes|journal=Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete|language=en|volume=56|issue=3|pages=329–360|doi=10.1007/BF00536178|s2cid=122109044|issn=0044-3719}}</ref> designed adaptive procedures to estimate <math display="inline">M'(\theta^*)</math> such that <math display="inline">\theta_n</math> has minimal asymptotic variance. However the application of such optimal methods requires much a priori information which is hard to obtain in most situations. To overcome this shortfall, Polyak (1991)<ref>{{Cite journal|last=Polyak|first=B T|date=1990-01-01|title=New stochastic approximation type procedures. (In Russian.)|url=https://www.researchgate.net/publication/236736759|volume=7|issue=7}}</ref> and Ruppert (1988)<ref>{{Cite journal|last=Ruppert|first=D.|title=Efficient estimators from a slowly converging robbins-monro process|url=https://www.researchgate.net/publication/242608650}}</ref> independently developed a new optimal algorithm based on the idea of averaging the trajectories. Polyak and Juditsky<ref name="pj">{{Cite journal | last1 = Polyak | first1 = B. T. | last2 = Juditsky | first2 = A. B. | doi = 10.1137/0330046 | title = Acceleration of Stochastic Approximation by Averaging | journal = SIAM Journal on Control and Optimization | volume = 30 | issue = 4 | pages = 838 | year = 1992 }}</ref> also presented a method of accelerating Robbins–Monro for linear and non-linear root-searching problems through the use of longer steps, and averaging of the iterates. The algorithm would have the following structure:<math display="block"> \theta_{n+1} - \theta_n = a_n(\alpha - N(\theta_n)), \qquad \bar{\theta}_n = \frac{1}{n} \sum^{n-1}_{i=0} \theta_i </math>The convergence of <math> \bar{\theta}_n </math> to the unique root <math>\theta^*</math> relies on the condition that the step sequence <math>\{a_n\}</math> decreases sufficiently slowly. That is