Cromodinamica quantistica: differenze tra le versioni

Contenuto cancellato Contenuto aggiunto
m Annullata la modifica 110394710 di 151.27.69.108 (discussione)
Etichetta: Annulla
m fix wl
Riga 13:
A questo punto una particella, la Δ++, rimaneva misteriosa; nel modello a quark essa risulta composta da tre quark up con spin paralleli. Comunque, poiché i quark sono [[fermioni]], questa combinazione sembrava violare il [[principio di esclusione di Pauli]]. Nel 1965 [[Moo-Young Han]] e [[Yōichirō Nambu]] risolsero il problema proponendo che i quark possedessero un grado di libertà di gauge [[SU(3)]] aggiuntivo, in seguito chiamata [[carica di colore]]. Essi notarono che i quark possono interagire per via di un ottetto di bosoni vettori di gauge: i [[gluoni]].
 
Poiché la ricerca di quark liberi era costantemente fallita, si pensò che i quark fossero semplicemente dei costrutti matematici inventati ad hoc e non delle particelle realmente esistenti. [[Richard Feynman]] argomentò che esperimenti ad alta energia mostravano che i quark erano reali: egli li chiamò ''partoni'', in quanto '''parte''' degli adroni. [[James Bjorken]] propose che certe relazioni potessero persistere nello [[scatteringScattering anelastico profondo|scattering profondamente anelastico]] (diffusione profondamente anelastica) di [[elettrone|elettroni]] e [[protoni]], cosa che fu dimostrata con spettacolarità in esperimenti condotti nel 1969 presso lo [[SLAC]] (Stanford Linear Accelerator Center).
 
Sebbene lo studio dell'interazione forte rimanga a tutt'oggi non del tutto chiara, la scoperta della [[libertà asintotica]] (proprietà di alcune [[teoria di gauge|teorie di gauge]] secondo cui le interazioni tra alcune particelle, ad esempio i quark, diventano arbitrariamente deboli a distanza molto basse) ad opera di [[David Gross]], [[David Politzer]] e [[Frank Wilczek]] ha permesso di effettuare previsioni precise riguardo ai risultati di molti esperimenti ad alte energie utilizzando le tecniche della [[teoria perturbativa]] della [[meccanica quantistica]]. L'esistenza dei [[gluoni]] è stata dimostrata nel 1979 durante esperimenti con l'acceleratore [[Hadron Elektron Ring Anlage|HERA]] di [[Amburgo]]. Questi esperimenti sono divenuti sempre più precisi, culminando nella conferma della [[QCD perturbativa]] ad un livello di errore di pochi punti percentuali per opera del [[CERN|LEP]] (Large Electron-Positron collider) del [[CERN]] di Ginevra.