Content deleted Content added
Tag: Reverted |
Reverting edit(s) by 49.38.254.124 (talk) to rev. 1075074617 by Krb19: non-constructive (RW 16.1) |
||
Line 34:
==Examples==
Many [[material properties]] and [[field (physics)|fields]] used in physics and engineering can be represented as symmetric tensor fields; for example: [[stress (physics)|stress]], [[strain tensor|strain]], and [[anisotropic]] [[Electrical resistivity and conductivity|conductivity]]. Also, in [[diffusion MRI]] one often uses symmetric tensors to describe diffusion in the brain or other parts of the body.
Line 40:
Ellipsoids are examples of [[algebraic varieties]]; and so, for general rank, symmetric tensors, in the guise of [[homogeneous polynomial]]s, are used to define [[projective varieties]], and are often studied as such.
Given a Riemannian manifold <math>(M,g)</math> equipped with its Levi-Civita connection <math>\nabla</math>, the [[Riemann curvature tensor#Coordinate expression|covariant curvature tensor]] is a symmetric order 2 tensor over the vector space <math display="inline">V = \Omega^2(M) = \bigwedge^2 T^*M</math> of differential 2-forms.
==Symmetric part of a tensor==
|