Content deleted Content added
Tags: Manual revert Reverted |
|||
Line 62:
* A function <math>f : X \to [-\infty, \infty]</math> valued in the [[extended real number]]s <math>[-\infty, \infty] = \R \cup \{\pm\infty\}</math> is convex if and only if its [[Epigraph (mathematics)|epigraph]] <math display=block>\{(x, r) \in X \times \R ~:~ r \geq f(x)\}</math> is a convex set.
* A differentiable function <math>f</math> defined on a convex ___domain is convex if and only if <math>f(x) \geq f(y) + \nabla f(y)^T \cdot (x-y)</math> holds for all <math>x, y</math> in the ___domain.
* A twice differentiable function of several variables is convex on a convex set if and only if its [[Hessian matrix]] of second [[partial derivative]]s is [[Positive-definite matrix|positive semidefinite]] on the interior of the convex set.
* For a convex function <math>f,</math> the [[sublevel set]]s <math>\{x : f(x) < a\}</math> and <math>\{x : f(x) \leq a\}</math> with <math>a \in \R</math> are convex sets. A function that satisfies this property is called a '''{{em|[[quasiconvex function]]}}''' and may fail to be a convex function.
|